Proof that Bird’s Linear Array Notation with 5 or more
entries goes beyond Conway’s Chained Arrow Notation

Conway’s Chained Arrow Notation (invented by John Conway) operates according to the following
rules:

When the chain consists of 3 entries, then
a—>b—-oc=a™"h (with ¢ Knuth’s up-arrows).

If the last entry in the chain is a 1, it can be removed:

a—->b—-.—-x—->1=a—-b—..—>x

If the penultimate entry in the chain is a 1, the last 2 entries can be removed:

a—-b—-.->x—-l1l—-z=a—-b—..—>x

If there are just 2 entries in the chain, the remaining arrow becomes an exponent:
a—b=a"b (sihnce a—b—1 = a”h).

The last entry in the chain can be reduced by 1 by taking the penultimate entry and replacing it with a
copy of the entire chain with its penultimate entry reduced by 1:
a—b—o..—>x—>(y+tl) — (z+1)
—a-ob-o.-ox->@a>b—o..ox>oy—>(z+])) >z

For example,
a—-b—o..ox>2->(z+1)
—a—->b—->..->x—>@>b—>.oXx—>1->(zt1) >z
—a—->b—->..-ox—>@>b—>..oX)>2Z
(1 nested bracket),
a—->b—-...->x—>3-(z+1)
—Ta—->.—-o>xXx—-@>.oxXx—>2->(z+t1) >z
—Ta-o.oxXx-o@a-o.ox->@->..ox>1-o((z+tl)—>2)>z
—a—>.—»xXx—>@->.ox—>@>...oX)>2)—>2Z
(2 nested brackets).
In general,
a—-b—-..—-x—(y+tl) — (z+1)
—a—->.—o>x—>@>..>x—>(... @a-—-..-x)—>2.... )—> 2z
(with y nested brackets).

The brackets can only be removed after the chain inside the brackets has been evaluated into a
single number.

Almost the first thing that | did when learning of this new notation was that | conjectured the following
results:

{a,b,1,2} >a—a—(b-1)—>2 (fora=3,b2=2),
{a,b,c,2} > a— a— (b-1) —» (c+1) (fora=3,b=2,c=1),
{a,b,c,3} > a—a—a—(b-1) - (ct+l) (fora=z3,b=2,c21),

{a,b,c,d} >a—a—a—..—a—(b-1) - (ct+l)
(with d+2 entries in chain, fora=3,b=>2,c21,d = 2).



Here, | will attempt to prove that
{a,b,c,d} >a—a—..—a—(b-1) - (ctl)
(with d+2 entries in chain, first d entries contain ‘a’),
foralaz3,b=2,c=21,d=2.

In order to do this, | first need to prove two Lemmas.

Lemma 1:
a—-b-oc—o..oy—>z 2 a3,
for chains of any length, where a, b, c, ..., y,z= 1.

Let C represent the chain a — b — ¢ — ... - y — z, which is of any length, where all of the entries
contain positive integers (1, 2, 3, ...).

When the chain is of length 1, C = a.
When the chain is of length2,C=a —>b=a"b = a.

When the chain is of length 3 or longer, C can be reduced in length, one at a time (by operation of
Conway’s Chained Arrow Notation), as follows,
C=za—->b—-o..ox—>oYy —(z1)
za—->bo..ox—>y —(z-2)
Ta-ob-o..oxoy —>1
—a—>b—o..o5x->y
za—>b—o..ox —(y-1)
—a—>b—..—>x"
until they contain 3 entries, for example,
C=a—-b-ocr=a™""bp (with c* Knuth'’s up-arrows).

Using my ‘extended operator notation’ (where the number in curly brackets represents the number of

up-arrows), C can be written as
C = a{c*}h.

Since,

C = af{c*1}b’ = a{c*2}b” =...= a{l} b* = a"b*,
for some positive integer b*, it follows that C = a for C of any length of 1 or greater, and so, Lemma 1
is proven.

Lemma 2:
a—a—..—»a—-((ytl)»z>@—-a—>..oa—-y—2)+1
(with n+2 entries in chain on each side, first n entries contain ‘a’),
foralaz3,y21,z=21,n21.

This involves proof by induction.



Whenaz3,y21,z=1,n=1,
a— (y+l) = a”(y+1)
a x any
2aty
ary +1 (since ay =2 371 > 1)
(@a—y)+1,
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and so,
a—>(y+1)—>1 > (a—>y—>1)+l,
this holds true.

Assuming that this holds true fora=3,y>1,z=k, n =1,
whena=3,y21,z=k+1,n=1,
a— (y+l1) — (k+1)

a {k+1} (y+1) (using my ‘extended operator notation’)
a{k} (a{k+1}y) (by definition)

a— (a{k+l}ly) —k

a—(@—-y—(ktl) -k

(@—-((@a—-y—(k+l)l)—-k+1

> (a— ((@a—y— (k+1))-2) > k) + 2

\

>a—->1—-k+(@a—-y—(ktl)-1
(since a—y—(k+1l) =2 a>1 bylLemmal)
=a+(a—-y—(k+l)-1
> (@a—y—(k+1) + 1,
this holds true. So, Lemma 2 holds true fora=3,y21,z21,n=1.

Assuming that this holds true fora=3,y =1,z =1, n =k,
whena=3,y21,z=1,n=k+l,
a—a—..ba—oa—-((ytl) =a—-a—-..—oa—>N->y
(with k+2 entries in chain on each side),
where N = a—a—..—a—(al) — (y+l)
(with k+2 entries in chain).
Since
a—a—..—ma—((ytl)»z>@—a—>..—oa—->y—2)+1
(with k+2 entries in chain on each side)
implies that
a—a—..—»a—»y—z>@—oa—>..oa—>1-2)+1
>@a—a—.—oa+l
(forally’ = 2, where ‘a — a — ... — a’ denotes k entries of ‘@),
it follows that
N>@—-a—-..—>a+l1l (with k entries in chain, since a-1 = 2)
= a+l (by Lemma 1),
and so,
a—a—..pa—oa—((ytl) >a—a—..—»a—(atl) >y
>(a—ma—..oa—a—-y+1
(with k+2 entries in chain on each side, since N > a+1).
This means that
a—a—>..—»a—oa—>(ytl)»1>(@a—-a—>..—»a—oa—->y—->1+1
(with k+3 entries in chain on each side),
and so Lemma 2 holds true fora=3,y>1,z=1, n=k+1.



Assuming that this also holds true fora=3,y=21,z=m,n=k+1 (aswellasa=3,y=1,z2=1, n =Kk),
whena=3,y21,z=m+1, n=k+1,
a—a—..—a—(ytl) » (m+l)

(with k+3 entries in chain and ‘a — a — ... — @’ represents k+1 entries of ‘@)
a—wa—..—»a—@oa—>..o>a—->y—->(Mm+tl)—>m
@—-a—..—ba—-(a—ma—>..va—->y—->mM+tl)1)->m)+1
@a—-a—..»a—->(a—a—..—->a—->y—-(m+l)-2) >m)+2
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.—ma—-l-m+@a—a—-..—>a—-y—->(Mm+l)-1
(since a—a—..—>a—y—(m+l) 2 a>1 bylLemmal)
.—oa—-y->m+tl)+@a—-a—..—a)-1
.—oa—-y—->(m+l))+a-1
(since a—a—..—a 2 a byLemmal)

>(@a—a—..—>a—y— (m+l) +1,
this holds true. So, this holds true fora =3,y =1, z > 1, n = k+1, which means that Lemma 2 holds
truefora=3,y=1,z21,n21anditis proven.
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Corollary 1:
Wheny >y =21,
a—»a—>..—»a—»y—oz>a—a—>..o>a—->y—2Z
(with n+2 entries in chain on each side, first n entries contain ‘a’),
foralla=z3,z=z1,n21.

This is the result of Lemma 2 being applied repeatedly, since y’'>y-1>y-2> ... >y.

Corollary 2:
Wheny >y =1,
a—a—..—a—y >a—a—>..—oa—y
(with n+1 entries in chain on each side, first n entries contain ‘a’),
foralla=z3,z=21,n21.

This is the same as Corollary 1 but with z = 1, which means that the final entries of the chains on both
sides of the inequality can be removed under the rules for Conway’s Chained Arrow Notation.

With both Lemmas proven, | am ready for the main part of the proof.

Main Proof:
{a,b,c,d}-1 >a—-a—..—a—(b-1) - (ct+tl)
(with d+2 entries in chain, first d entries contain ‘a’),
forala=z3,b22,c21,d=2.

This also involves proof by induction.

Whena=3,b=2,¢c=1,d=2,
{a,2,1,2}-1 ={a,a,{a,1,1,2}}-1



={a,a,a}-1

= (a—ma—a)-1 (since {a, b,c} = a— b — ¢, by definition)
> a—a—(al) (by Lemma2withy=a-1,z=1,n=2)
>a—-a—1l (by Corollary 2, since a-1 > 1)

= a—a

a—a—o1-2,

this holds true.

Assuming that this holds true fora=3,b=k,c=1,d = 2,
whena=3,b=k+1l,c=1,d=2,
{a,k+1,1,2}-1 ={a,a,{a, k,1,2}}-1
@a—a—{a,k11,2)-1
(since {a, b,c} = a— b — ¢, by definition)
a—a—({ak1,2}-1)
(by Lemma 2 withy={a, k,1,2}-1,z=1,n=2)
>a—a—o(@a—a—o(k1l)—2)
(by Corollary 2, since {a,k,1,2}-1 > a—a— (k-1) — 2)
= a—a—ok—2,
this holds true. So, this holds true fora=3,b=2,c=1,d = 2.
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Assuming that this holds true fora=3,b=22,c =k, d =2,
whena=3,b=2,c=k+1,d =2,
{a,2,k+1,2}-1 = {a,{a, 1, k+1,2}, k, 2}-1
{a,a,k,2}-1
a—a—(a-1) — (k+1)
a—a—1-— (k+l) (by Corollary 1, since a-1 > 1)
a—a
a—a—1- (k+2),
this holds true, and assuming that this also holds true fora =3, b=m, c = k+1, d = 2,
whena=3,b=m+1,c=k+1,d =2,
{a, m+1,k+1,2}-1 = {a,{a, m, k+1,2}, k, 2} -1
>a—a— ({a,mk+l, 2}-1) — (k+1)
>a—a—(a—a— (Mm-1) - (k+2)) — (k+1)
(by Corollary 1, since {a, m, k+1,2}-1 > a— a— (m-1) — (k+2))
= a—a—m— (k+2),
this holds true. So, this holds true fora = 3, b =2 2, ¢ = k+1, d = 2, and therefore, this holds true for
az3,bz2c=z21,d=2.
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Assuming that this holds true fora=3,b=2,c2>1,d =k,
whena=3,b=2c¢c=1,d=k+1,
{a,2,1,k+1}-1 = {a,a,{a, 1, 1, k+1}, k} - 1
{a,a,a,k}-1
>a—..—oa—(al) — (atl)
(with k+2 entries in chain and ‘a — ... — a’ represents k ‘a’s)
a—>..»a—(@a—..—»a—(@2—-(@tl)—a
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a—..—a—a—a
(by Corollary 1, since a —» ... »a — (a-2) —» (a+l) = a
by Lemma 1)



>a—>..—»a—a—1
(by Corollary 2, since a > 1)
=—a—..—a—a
—a—>..—»a—oa—>1-2
(with k+3 entries in chain),
this holds true, and assuming that this also holds true fora=3,b=m, c=1, d = k+1,
whena=3,b=m+1,c=1,d=k+1,
{a, m+1,1,k+1}-1 = {a,a,{a, m, 1, k+1}, k}- 1
>a—..—»a—(al)—{am1 k+tl} +1)

(with k+2 entries in chain and ‘a — ... — a’ represents k ‘a’s)
a—..—»a—@—..—»>a—(@2)—({am1,k+1} +1)) »{a, m,1, k+1}
a—..—»a—a—{am,l, k+l}

(by Corollary 1, since a — ... »a—(a-2) - ({a,m, 1, k+1} +1) = a

by Lemma 1)

>a—>.—»a—a—@—>..»a—a—> (M1 -2
(by Corollary 2, since {a, m, 1, k+1} > a— .. —-a—a— (m-1) — 2)
—a—>..—»a—a—-m-—2
(with k+3 entries in chain),
this holds true. So, this holds true fora=3,b=>2,c =1, d = k+1.
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Assuming that this also holds true fora=3,b=2,c=n,d=k+1 (aswellasa=3,b=22,c =1, d =k),
whena=3,b=2,¢c=n+1,d=k+1,
{a, 2, n+1,k+1}-1 = {a, {a, 1, n+1, k+1}, n, k+1} - 1
={a,a, n k+1}-1
>a—..—oa—(al) - (nt+l)
(with k+3 entries in chain and ‘a — ... — @’ represents k+1 ‘a’s)
>a—..—a—1-—-(n+l)
(by Corollary 1, since a-1 > 1)

a—..—a

a—..—»a—1-(nt2)
(with k+3 entries in chain),
this holds true, and assuming that this also holds true fora =3, b=m, c = n+1, d = k+1,
whena=3,b=m+1, c=n+l, d=k+1,
{a, m+1, n+1, k+1} -1 {a, {a, m, n+1, k+1}, n, k+1} - 1
> a—..—a— ({a, m n+l, k+1} - 1) — (n+1)
(with k+3 entries in chain, ‘a — ... — a’ representing k+1 ‘a’s)
>a—>..—»a—-@—-..—>a—(m1) - (n+2)) — (n+l)
(by Corollary 1, since
{a, m,n+1,k+1}-1 > a— ... > a— (m-1) — (n+2))
a—..—>a—m-(nt+2)
(with k+3 entries in chain),
this holds true. So, this holds true fora = 3, b =2 2, ¢ = n+1, d = k+1, which means that this holds true
fora=z3,b=22,c21,d=k+l.

Therefore, the inequality
{a,b,c,d} >a—a—..—a—(b-1) - (ctl)
(with d+2 entries in chain, first d entries contain ‘a’)
holds true foralla=3,b>2,c2>1,d =2 and | have completed the proof.



For example,
{3,3,1,2} >3-53-52->2,
{3,3,2,2} >3-53-52->3,
{3,4,2,2} > 3—-3—->53-—>3,
{3,3,1,3} 35353522,
{3,3,2,3} >3-3-53—-52->3,
{3,4,2,3} > 35353533,
{3,3,3,3} >3-53-53—-52-4,
{3,3,1,4 >3-53-53-53->52->2,
{4,4,4,4 > 4545454305,
3,3,1,5>3-3-53-53-53-52->2,
331103>3-3-3-3-3-3-53-53-53-53-52->2.

Another result from the proof (especially for large d) is that (for a = 3)
{a,a,a,d} >a—a—..—>a—(a-l) — (a+l)
(with d+2 entries in chain, first d entries contain ‘a’)
a—a—..—»a—-(@—a—..—a— (@2 —(@tl) —a

Z2a—a—..—a—a—a
(by Corollary 1, since a—a — ... > a— (a-2) — (a+1l) = a by Lemma 1),
so, when a 2 3,
{a,a,a,d} >a—a—..—a (with d+2 entries of ‘a’ in chain).

So, while the final entry in an array of 3 entries determines the number of Knuth’s up-arrows, this
‘array notation’ grows so phenomenally fast that the final entry in an array of just 4 entries determines
the minimum length of the Conway chain. An array of length 5 would (of course) become far too huge
for Conway’s Chained Arrow Notation. For example (for a = 3), while

{a,2,1,1,2} = {a, a, a, a}

>a—a—..—a (with a+2 entries in chain)
= N'
{a,3,1,1,2} = {a,a,a,{a, 2,1, 1, 2}}
>a—a—..—a (with N+2 entries in chain),
and so,
{a,b,1,1,2} = {a,4a,4a,{a b-1,1,1, 2}}
>a—a—..—a (with {a, b-1, 1, 1, 2} + 2 entries in chain).
This means that while
{3,2,1,1,2} = {3,3,3,3}
>3—-53—-53—-2—-14
>3—-53—-53—-53-3 (of length 5),
the number

{3,5,1,1,2} >3-3—-3—>..—-3
(of length 3 >3 — ... - 3 (oflength 3 -3 — ... > 3 (of
length 3—-3— ... >3 (oflength 3 >3 -3 -2 4))),
which should be sufficient proof that Bird’s Linear Array Notation with 5 or more entries generally goes
beyond Conway’s Chained Arrow Notation.

One can only try to imagine the largeness of arrays with 6 or more entries! Even
{3,3,1,1,1,2} = {3,3,3,3,{3,3,3, 3, 3}}.



Of course, these arrays (like the numbers in Conway’s Chained Arrow Notation) can contain
hundreds, thousands or millions of entries, or even much, much more than that!
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