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Proof that Bird’s Linear Array Notation with 5 or more 
entries goes beyond Conway’s Chained Arrow Notation 

 

 

Conway’s Chained Arrow Notation (invented by John Conway) operates according to the following 

rules: 

 

When the chain consists of 3 entries, then 

 a → b → c  =  a ^^^
...

^ b  (with c Knuth’s up-arrows). 

 

If the last entry in the chain is a 1, it can be removed: 

 a → b → ... → x → 1  =  a → b → ... → x. 

 

If the penultimate entry in the chain is a 1, the last 2 entries can be removed: 

 a → b → ... → x → 1 → z  =  a → b → ... → x. 

 

If there are just 2 entries in the chain, the remaining arrow becomes an exponent: 

 a → b  =  a ^ b  (since  a → b → 1  =  a ^ b). 

 

The last entry in the chain can be reduced by 1 by taking the penultimate entry and replacing it with a 

copy of the entire chain with its penultimate entry reduced by 1: 

 a → b → ... → x → (y+1) → (z+1) 

  =  a → b → ... → x → (a → b → ... → x → y → (z+1)) → z. 

 

For example, 

 a → b → ... → x → 2 → (z+1) 

  =  a → b → ... → x → (a → b → ... → x → 1 → (z+1)) → z 

  =  a → b → ... → x → (a → b → ... → x) → z 

         (1 nested bracket), 

 a → b → ... → x → 3 → (z+1) 

  =  a → ... → x → (a → ... → x → 2 → (z+1)) → z 

  =  a → ... → x → (a → ... → x → (a → ... → x → 1 → (z+1)) → z) → z 

  =  a → ... → x → (a → ... → x → (a → ... → x) → z) → z 

         (2 nested brackets). 

In general, 

 a → b → ... → x → (y+1) → (z+1) 

  =  a → ... → x → (a → ... → x → ( ...... (a → ... → x) → z) ...... ) → z 

         (with y nested brackets). 

 

The brackets can only be removed after the chain inside the brackets has been evaluated into a 

single number. 

 

Almost the first thing that I did when learning of this new notation was that I conjectured the following 

results: 

 {a, b, 1, 2}  >  a → a → (b-1) → 2   (for a ≥ 3, b ≥ 2), 

 {a, b, c, 2}  >  a → a → (b-1) → (c+1)   (for a ≥ 3, b ≥ 2, c ≥ 1), 

 {a, b, c, 3}  >  a → a → a → (b-1) → (c+1)  (for a ≥ 3, b ≥ 2, c ≥ 1), 

 {a, b, c, d}  >  a → a → a → ... → a → (b-1) → (c+1) 

    (with d+2 entries in chain, for a ≥ 3, b ≥ 2, c ≥ 1, d ≥ 2). 



2 
 

Here, I will attempt to prove that 

 {a, b, c, d}  >  a → a → ... → a → (b-1) → (c+1) 

    (with d+2 entries in chain, first d entries contain ‘a’), 

for all a ≥ 3, b ≥ 2, c ≥ 1, d ≥ 2. 

 

In order to do this, I first need to prove two Lemmas. 

 

 

Lemma 1: 

 a → b → c → ... → y → z  ≥  a, 

for chains of any length, where a, b, c, ... , y, z ≥ 1. 

 

Let C represent the chain  a → b → c → ... → y → z,  which is of any length, where all of the entries 

contain positive integers (1, 2, 3, ...). 

 

When the chain is of length 1, C = a. 

 

When the chain is of length 2, C = a → b = a^b ≥ a. 

 

When the chain is of length 3 or longer, C can be reduced in length, one at a time (by operation of 

Conway’s Chained Arrow Notation), as follows, 

 C = a → b → ... → x → y’ → (z-1) 

    = a → b → ... → x → y’’ → (z-2) 

          ...... 

    = a → b → ... → x → y* → 1 

    = a → b → ... → x → y* 

    = a → b → ... → x’ → (y*-1) 

          ...... 

    = a → b → ... → x*, 

until they contain 3 entries, for example, 

 C = a → b → c* = a ^^^
...
^ b  (with c* Knuth’s up-arrows). 

 

Using my ‘extended operator notation’ (where the number in curly brackets represents the number of 

up-arrows), C can be written as 

 C  =  a {c*} b. 

 

Since, 

 C  =  a {c*-1} b’  =  a {c*-2} b’’  = ... =  a {1} b*  =  a^b*, 

for some positive integer b*, it follows that C ≥ a for C of any length of 1 or greater, and so, Lemma 1 

is proven. 

 

 

Lemma 2: 

 a → a → ... → a → (y+1) → z  >  (a → a → ... → a → y → z) + 1 

  (with n+2 entries in chain on each side, first n entries contain ‘a’), 

for all a ≥ 3, y ≥ 1, z ≥ 1, n ≥ 1. 

 

This involves proof by induction. 
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When a ≥ 3, y ≥ 1, z = 1, n = 1, 

 a → (y+1)  =  a ^ (y+1) 

                   =  a × a^y 

                   >  2a^y 

                   >  a^y + 1  (since a^y ≥ 3^1 > 1) 

                   >  (a → y) + 1, 

and so, 

 a → (y+1) → 1  >  (a → y → 1) + 1, 

this holds true. 

 

Assuming that this holds true for a ≥ 3, y ≥ 1, z = k, n = 1, 

when a ≥ 3, y ≥ 1, z = k+1, n = 1, 

 a → (y+1) → (k+1)  =  a {k+1} (y+1)  (using my ‘extended operator notation’) 

                                 =  a {k} (a {k+1} y)  (by definition) 

                                 =  a → (a {k+1} y) → k 

                                 =  a → (a → y → (k+1)) → k 

                                 >  (a → ((a → y → (k+1))-1) → k) + 1 

                                 >  (a → ((a → y → (k+1))-2) → k) + 2 

                                       ...... 

                                 >  (a → 1 → k) + (a → y → (k+1)) - 1 

     (since  a → y → (k+1)  ≥  a > 1  by Lemma 1) 

                                 =  a + (a → y → (k+1)) - 1 

                                 >  (a → y → (k+1)) + 1, 

this holds true. So, Lemma 2 holds true for a ≥ 3, y ≥ 1, z ≥ 1, n = 1. 

 

Assuming that this holds true for a ≥ 3, y ≥ 1, z ≥ 1, n = k, 

when a ≥ 3, y ≥ 1, z = 1, n = k+1, 

 a → a → ... → a → a → (y+1)  =  a → a → ... → a → N → y 

  (with k+2 entries in chain on each side), 

where  N  =  a → a → ... → a → (a-1) → (y+1) 

  (with k+2 entries in chain). 

Since 

 a → a → ... → a → (y+1) → z  >  (a → a → ... → a → y → z) + 1 

  (with k+2 entries in chain on each side) 

implies that 

 a → a → ... → a → y’ → z  >  (a → a → ... → a → 1 → z) + 1 

                                            >  (a → a → ... → a) + 1 

  (for all y’ ≥ 2, where ‘a → a → ... → a’ denotes k entries of ‘a’), 

it follows that 

 N  >  (a → a → ... → a) + 1 (with k entries in chain, since a-1 ≥ 2) 

      ≥  a+1   (by Lemma 1), 

and so, 

 a → a → ... → a → a → (y+1)  >  a → a → ... → a → (a+1) → y 

                                                  >  (a → a → ... → a → a → y) + 1 

  (with k+2 entries in chain on each side, since N > a+1). 

This means that 

 a → a → ... → a → a → (y+1) → 1  >  (a → a → ... → a → a → y → 1) + 1 

  (with k+3 entries in chain on each side), 

and so Lemma 2 holds true for a ≥ 3, y ≥ 1, z = 1, n = k+1. 
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Assuming that this also holds true for a ≥ 3, y ≥ 1, z = m, n = k+1 (as well as a ≥ 3, y ≥ 1, z ≥ 1, n = k), 

when a ≥ 3, y ≥ 1, z = m+1, n = k+1, 

 a → a → ... → a → (y+1) → (m+1) 

   (with k+3 entries in chain and ‘a → a → ... → a’ represents k+1 entries of ‘a’) 

  =  a → a → ... → a → (a → a → ... → a → y → (m+1)) → m 

  >  (a → a → ... → a → ((a → a → ... → a → y → (m+1))-1) → m) + 1 

  >  (a → a → ... → a → ((a → a → ... → a → y → (m+1))-2) → m) + 2 

        ...... 

  >  (a → a → ... → a → 1 → m) + (a → a → ... → a → y → (m+1)) - 1 

   (since  a → a → ... → a → y → (m+1)  ≥  a > 1  by Lemma 1) 

  =  (a → a → ... → a → y → (m+1)) + (a → a → ... → a) - 1 

  ≥  (a → a → ... → a → y → (m+1)) + a - 1 

   (since  a → a → ... → a  ≥  a  by Lemma 1) 

  >  (a → a → ... → a → y → (m+1)) + 1, 

this holds true. So, this holds true for a ≥ 3, y ≥ 1, z ≥ 1, n = k+1, which means that Lemma 2 holds 

true for a ≥ 3, y ≥ 1, z ≥ 1, n ≥ 1 and it is proven. 

 

 

Corollary 1: 

When y’ > y ≥ 1, 

 a → a → ... → a → y’ → z  >  a → a → ... → a → y → z 

  (with n+2 entries in chain on each side, first n entries contain ‘a’), 

for all a ≥ 3, z ≥ 1, n ≥ 1. 

 

This is the result of Lemma 2 being applied repeatedly, since  y’ > y’-1 > y’-2 > ... > y. 

 

 

Corollary 2: 

When y’ > y ≥ 1, 

 a → a → ... → a → y’  >  a → a → ... → a → y 

  (with n+1 entries in chain on each side, first n entries contain ‘a’), 

for all a ≥ 3, z ≥ 1, n ≥ 1. 

 

This is the same as Corollary 1 but with z = 1, which means that the final entries of the chains on both 

sides of the inequality can be removed under the rules for Conway’s Chained Arrow Notation. 

 

 

With both Lemmas proven, I am ready for the main part of the proof. 

 

 

Main Proof: 

 {a, b, c, d} - 1  >  a → a → ... → a → (b-1) → (c+1) 

    (with d+2 entries in chain, first d entries contain ‘a’), 

for all a ≥ 3, b ≥ 2, c ≥ 1, d ≥ 2. 

 

This also involves proof by induction. 

 

When a ≥ 3, b = 2, c = 1, d = 2, 

 {a, 2, 1, 2} - 1  =  {a, a, {a, 1, 1, 2}} - 1 
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                         =  {a, a, a} - 1 

                         =  (a → a → a) - 1 (since  {a, b, c}  =  a → b → c,  by definition) 

                         >  a → a → (a-1)  (by Lemma 2 with y = a-1, z = 1, n = 2) 

                         >  a → a → 1  (by Corollary 2, since a-1 > 1) 

                         =  a → a 

                         =  a → a → 1 → 2, 

this holds true. 

 

Assuming that this holds true for a ≥ 3, b = k, c = 1, d = 2, 

when a ≥ 3, b = k+1, c = 1, d = 2, 

 {a, k+1, 1, 2} - 1  =  {a, a, {a, k, 1, 2}} - 1 

                            =  (a → a → {a, k, 1, 2}) - 1 

    (since  {a, b, c}  =  a → b → c,  by definition) 

                            >  a → a → ({a, k, 1, 2} - 1) 

    (by Lemma 2 with y = {a, k, 1, 2} - 1, z = 1, n = 2) 

                            >  a → a → (a → a → (k-1) → 2) 

    (by Corollary 2, since  {a, k, 1, 2} - 1  >  a → a → (k-1) → 2) 

                            =  a → a → k → 2, 

this holds true. So, this holds true for a ≥ 3, b ≥ 2, c = 1, d = 2. 

 

Assuming that this holds true for a ≥ 3, b ≥ 2, c = k, d = 2, 

when a ≥ 3, b = 2, c = k+1, d = 2, 

 {a, 2, k+1, 2} - 1  =  {a, {a, 1, k+1, 2}, k, 2} - 1 

                            =  {a, a, k, 2} - 1 

                            >  a → a → (a-1) → (k+1) 

                            >  a → a → 1 → (k+1)  (by Corollary 1, since a-1 > 1) 

                            =  a → a 

                            =  a → a → 1 → (k+2), 

this holds true, and assuming that this also holds true for a ≥ 3, b = m, c = k+1, d = 2, 

when a ≥ 3, b = m+1, c = k+1, d = 2, 

 {a, m+1, k+1, 2} - 1  =  {a, {a, m, k+1, 2}, k, 2} - 1 

                                 >  a → a → ({a, m, k+1, 2} - 1) → (k+1) 

                                 >  a → a → (a → a → (m-1) → (k+2)) → (k+1) 

    (by Corollary 1, since  {a, m, k+1, 2} - 1  >  a → a → (m-1) → (k+2)) 

                                 =  a → a → m → (k+2), 

this holds true. So, this holds true for a ≥ 3, b ≥ 2, c = k+1, d = 2, and therefore, this holds true for 

a ≥ 3, b ≥ 2, c ≥ 1, d = 2. 

 

Assuming that this holds true for a ≥ 3, b ≥ 2, c ≥ 1, d = k, 

when a ≥ 3, b = 2, c = 1, d = k+1, 

 {a, 2, 1, k+1} - 1  =  {a, a, {a, 1, 1, k+1}, k} - 1 

                            =  {a, a, a, k} - 1 

                            >  a → ... → a → (a-1) → (a+1) 

    (with k+2 entries in chain and ‘a → ... → a’ represents k ‘a’s) 

                            =  a → ... → a → (a → ... → a → (a-2) → (a+1)) → a 

                            ≥  a → ... → a → a → a 

    (by Corollary 1, since  a → ... → a → (a-2) → (a+1)  ≥  a 

     by Lemma 1) 
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                            >  a → ... → a → a → 1 

    (by Corollary 2, since a > 1) 

                            =  a → ... → a → a 

                            =  a → ... → a → a → 1 → 2 

    (with k+3 entries in chain), 

this holds true, and assuming that this also holds true for a ≥ 3, b = m, c = 1, d = k+1, 

when a ≥ 3, b = m+1, c = 1, d = k+1, 

 {a, m+1, 1, k+1} - 1  =  {a, a, {a, m, 1, k+1}, k} - 1 

  >  a → ... → a → (a-1) → ({a, m, 1, k+1} + 1) 

   (with k+2 entries in chain and ‘a → ... → a’ represents k ‘a’s) 

  =  a → ... → a → (a → ... → a → (a-2) → ({a, m, 1, k+1} + 1)) → {a, m, 1, k+1} 

  ≥  a → ... → a → a → {a, m, 1, k+1} 

   (by Corollary 1, since  a → ... → a → (a-2) → ({a, m, 1, k+1} + 1)  ≥  a 

    by Lemma 1) 

  >  a → ... → a → a → (a → ... → a → a → (m-1) → 2) 

   (by Corollary 2, since  {a, m, 1, k+1}  >  a → ... → a → a → (m-1) → 2) 

  =  a → ... → a → a → m → 2 

   (with k+3 entries in chain), 

this holds true. So, this holds true for a ≥ 3, b ≥ 2, c = 1, d = k+1. 

 

Assuming that this also holds true for a ≥ 3, b ≥ 2, c = n, d = k+1 (as well as a ≥ 3, b ≥ 2, c ≥ 1, d = k), 

when a ≥ 3, b = 2, c = n+1, d = k+1, 

 {a, 2, n+1, k+1} - 1  =  {a, {a, 1, n+1, k+1}, n, k+1} - 1 

                                =  {a, a, n, k+1} - 1 

                                >  a → ... → a → (a-1) → (n+1) 

    (with k+3 entries in chain and ‘a → ... → a’ represents k+1 ‘a’s) 

                                >  a → ... → a → 1 → (n+1) 

    (by Corollary 1, since a-1 > 1) 

                                =  a → ... → a 

                                =  a → ... → a → 1 → (n+2) 

    (with k+3 entries in chain), 

this holds true, and assuming that this also holds true for a ≥ 3, b = m, c = n+1, d = k+1, 

when a ≥ 3, b = m+1, c = n+1, d = k+1, 

 {a, m+1, n+1, k+1} - 1  =  {a, {a, m, n+1, k+1}, n, k+1} - 1 

                                      >  a → ... → a → ({a, m, n+1, k+1} - 1) → (n+1) 

     (with k+3 entries in chain, ‘a → ... → a’ representing k+1 ‘a’s) 

                                      >  a → ... → a → (a → ... → a → (m-1) → (n+2)) → (n+1) 

     (by Corollary 1, since 

      {a, m, n+1, k+1} - 1  >  a → ... → a → (m-1) → (n+2)) 

                                      =  a → ... → a → m → (n+2) 

     (with k+3 entries in chain), 

this holds true. So, this holds true for a ≥ 3, b ≥ 2, c = n+1, d = k+1, which means that this holds true 

for a ≥ 3, b ≥ 2, c ≥ 1, d = k+1. 

 

Therefore, the inequality 

 {a, b, c, d}  >  a → a → ... → a → (b-1) → (c+1) 

    (with d+2 entries in chain, first d entries contain ‘a’) 

holds true for all a ≥ 3, b ≥ 2, c ≥ 1, d ≥ 2 and I have completed the proof. 
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For example, 

 {3, 3, 1, 2}  >  3 → 3 → 2 → 2, 

 {3, 3, 2, 2}  >  3 → 3 → 2 → 3, 

 {3, 4, 2, 2}  >  3 → 3 → 3 → 3, 

 {3, 3, 1, 3}  >  3 → 3 → 3 → 2 → 2, 

 {3, 3, 2, 3}  >  3 → 3 → 3 → 2 → 3, 

 {3, 4, 2, 3}  >  3 → 3 → 3 → 3 → 3, 

 {3, 3, 3, 3}  >  3 → 3 → 3 → 2 → 4, 

 {3, 3, 1, 4}  >  3 → 3 → 3 → 3 → 2 → 2, 

 {4, 4, 4, 4}  >  4 → 4 → 4 → 4 → 3 → 5, 

 {3, 3, 1, 5}  >  3 → 3 → 3 → 3 → 3 → 2 → 2, 

 {3, 3, 1, 10}  >  3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 3 → 2 → 2. 

 

Another result from the proof (especially for large d) is that (for a ≥ 3) 

 {a, a, a, d}  >  a → a → ... → a → (a-1) → (a+1) 

   (with d+2 entries in chain, first d entries contain ‘a’) 

                   =  a → a → ... → a → (a → a → ... → a → (a-2) → (a+1)) → a 

                   ≥  a → a → ... → a → a → a 

   (by Corollary 1, since  a → a → ... → a → (a-2) → (a+1)  ≥  a  by Lemma 1), 

so, when a ≥ 3, 

 {a, a, a, d}  >  a → a → ... → a  (with d+2 entries of ‘a’ in chain). 

 

So, while the final entry in an array of 3 entries determines the number of Knuth’s up-arrows, this 

‘array notation’ grows so phenomenally fast that the final entry in an array of just 4 entries determines 

the minimum length of the Conway chain. An array of length 5 would (of course) become far too huge 

for Conway’s Chained Arrow Notation. For example (for a ≥ 3), while 

 {a, 2, 1, 1, 2}  =  {a, a, a, a} 

                       >  a → a → ... → a (with a+2 entries in chain) 

                       =  N, 

 {a, 3, 1, 1, 2}  =  {a, a, a, {a, 2, 1, 1, 2}} 

                       >  a → a → ... → a (with N+2 entries in chain), 

and so, 

 {a, b, 1, 1, 2}  =  {a, a, a, {a, b-1, 1, 1, 2}} 

                       >  a → a → ... → a (with  {a, b-1, 1, 1, 2} + 2  entries in chain). 

 

This means that while 

 {3, 2, 1, 1, 2}  =  {3, 3, 3, 3} 

                       >  3 → 3 → 3 → 2 → 4 

                       >  3 → 3 → 3 → 3 → 3 (of length 5), 

the number 

 {3, 5, 1, 1, 2}  >  3 → 3 → 3 → ... → 3 

    (of length  3 → 3 → ... → 3  (of length  3 → 3 → ... → 3  (of 

     length  3 → 3 → ... → 3  (of length  3 → 3 → 3 → 2 → 4)))), 

which should be sufficient proof that Bird’s Linear Array Notation with 5 or more entries generally goes 

beyond Conway’s Chained Arrow Notation. 

 

One can only try to imagine the largeness of arrays with 6 or more entries! Even 

 {3, 3, 1, 1, 1, 2}  =  {3, 3, 3, 3, {3, 3, 3, 3, 3}}. 
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Of course, these arrays (like the numbers in Conway’s Chained Arrow Notation) can contain 

hundreds, thousands or millions of entries, or even much, much more than that! 
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