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Bird’s Linear Array Notation 
 

Handles recursive functions with limit ordinal ω 
 

 

The Linear Array Notation has 5 rules of operation 

 

Rule 1 (only 1 or 2 entries): 

 {a} = a, 

 {a, b} = a^b. 

 

Rule 2 (last entry is 1): 

 {a, b, c, ... , z, 1} = {a, b, c, ... , z} (remove trailing 1’s). 

 

Rule 3 (second entry is 1): 

 {a, 1, c, d, ... , z} = a. 

 

Rule 4 (third entry is 1): 

 {a, b, 1, ... , 1, d, e, ... , z} = {a, a, a, ... , {a, b-1, 1, ... , 1, d, e, ... , z}, d-1, e, ... , z}. 

The ‘...’ between the 1’s represents an unbroken string of 1’s – there can be any number of 1’s, from 

one 1 (third entry alone) to a string of 1’s up to the penultimate entry – it is the last 1 of this unbroken 

string (not necessarily the last 1 in the array) that is replaced by a copy of the entire array with its 

second entry reduced by 1, and all entries prior to this become an unbroken string of a’s. This is the 

only way that a fourth or subsequent entry in the array can be reduced in number (albeit by 1); if there 

are n 1’s in the unbroken string from the third entry onwards then the (n+3)th entry (represented by d) 

is reduced by 1. 

 

Rule 5 (rules 1-4 do not apply): 

 {a, b, c, d, ... , z} = {a, {a, b-1, c, d, ... , z}, c-1, d, ... , z}. 

The second entry is replaced by a copy of the entire array with its second entry reduced by 1, in order 

to reduce the third entry by 1. 

 

It is helpful when the rules are considered in sequence; first use Rule 1 if it applies, if not then use 

Rule 2, etc. If none of Rules 1-4 apply then Rule 5 will. The curly brackets can only be removed after 

the array inside the curly brackets has been evaluated into a single number. 

 

 

About the Linear Array Notation 

 

Bird’s Linear Array Notation is similar to Jonathan Bowers’ Array Notation for linear arrays except that 

he originally defined  {a, b} = a+b  rather than  {a, b} = a^b.  It is more logical to set  {a, b} = a^b  

rather than  {a, b} = a+b  because Rules 2 and 3 would then work for arrays with 2 entries, just as 

they do for arrays with 3 or more entries. For example,  {a, 1} = a^1 = a,  whereas  a+1 ≠ a. 

 

Jonathan Bowers’ Array Notation builds on his Extended Operator Notation, which was originally 

 a {1} b = a + b, 

 a {2} b = a × b, 

 a {3} b = a ^ b, 

and, in general, 
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 a {c} b = a {c-1} (a {c-1} (a {c-1} ( ... (a {c-1} a)...))) (with b terms) 

            = a {c-1} (a {c} (b-1)). 

 

Bird’s Linear Array Notation modifies this so that 

 a {1} b = a ^ b, 

 a {2} b = a ^ (a ^ (a ^ (a ^ ( ... (a ^ a)...))))  (with b terms), 

 a {3} b = a {2} (a {2} (a {2} ( ... (a {2} a)...)))  (with b terms), 

and so on. 

 

Bowers nested these huge numbers inside operators by defining 

 a {{1}} 2 = a {a} a, 

 a {{1}} 3 = a {a {a} a} a, 

 a {{1}} 4 = a {a {a {a} a} a} a, 

 a {{1}} b = a {a {a { ... {a {a} a} ... } a} a} a  (with b a’s from centre out), 

and 

 a {{c}} b = a {{c-1}} (a {{c-1}} (a {{c-1}} ( ... (a {{c-1}} a)...))) (with b terms). 

 

Further, he defined 

 a {{{1}}} b = a {{a {{a {{ ... {{a {{a}} a}} ... }} a}} a}} a 

        (with b a’s from centre out), 

 a {{{c}}} b = a {{{c-1}}} (a {{{c-1}}} (a {{{c-1}}} ( ... (a {{{c-1}}} a)...))) 

        (with b terms), 

 a {{{{1}}}} b = a {{{a {{{a {{{ ... {{{a {{{a}}} a}}} ... }}} a}}} a}}} a 

        (with b a’s from centre out), 

 a {{{{c}}}} b = a {{{{c-1}}}} (a {{{{c-1}}}} (a {{{{c-1}}}} ( ... (a {{{{c-1}}}} a)...))) 

        (with b terms), 

and, in general, when { }d denotes {{{..{ }..}}} with d pairs of curly brackets, 

 a {1}d b = a {a {a { ... {a {a}d-1 a}d-1 ... }d-1 a}d-1 a}d-1 a (with b a’s from centre out), 

 a {c}d b = a {c-1}d (a {c-1}d (a {c-1}d ( ... (a {c-1}d a)...))) (with b terms). 

 

The last 2 equations can be rewritten as follows: 

 a {1}d b = a {a {1}d (b-1)}d-1 a, 

 a {c}d b = a {c-1}d (a {c}d (b-1)). 

 

In an array of 3 entries, 

 {a, b, c} = a {c} b 

              = a ^^^
...
^ b  (with c Knuth’s up-arrows) 

              = a → b → c  (in Conway’s Chained Arrow Notation). 

 

In an array of 4 entries, 

 {a, b, c, d} = a {{{..{c}..}}} b (with d pairs of curly brackets). 

 

This is because, in the case of arrays with 3 entries, 

 {a, b, 1} = a {1} b 

              = a ^ b 

              = {a, b}   (gives Rule 2 for 3-entry arrays), 

 {a, 1, c} = a {c} 1 

              = a   (gives Rule 3 for 3-entry arrays), 
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 {a, b, c} = a {c} b 

              = a {c-1} (a {c} (b-1)) 

              = {a, (a {c} (b-1)), c-1} 

              = {a, {a, b-1, c}, c-1} (gives Rule 5 for 3-entry arrays). 

 

In the case of arrays with 4 entries (with { }d denoting {{{..{ }..}}} with d pairs of curly brackets), 

 {a, b, c, 1} = a {c} b 

                  = {a, b, c}   (gives Rule 2 for 4-entry arrays), 

 {a, 1, c, d} = a {c}d 1 

                  = a    (gives Rule 3 for 4-entry arrays), 

 {a, b, 1, d} = a {1}d b 

                  = a {a {1}d (b-1)}d-1 a 

                  = {a, a, (a {1}d (b-1)), d-1} 

                  = {a, a, {a, b-1, 1, d}, d-1} (gives Rule 4 for 4-entry arrays), 

 {a, b, c, d} = a {c}d b 

                  = a {c-1}d (a {c}d (b-1)) 

                  = {a, (a {c}d (b-1)), c-1, d} 

                  = {a, {a, b-1, c, d}, c-1, d} (gives Rule 5 for 4-entry arrays). 

 

The Linear Array Notation with n entries (n ≥ 2) handles fast-growing functions up to recursion level 

n-1 (or (n-1)-recursive functions) since there are n-1 arguments (excluding the first entry, which is the 

base or ‘filler’ entry). Knuth’s Up-arrow Notation only goes up to recursion level 2 because it does not 

extend beyond 3-entry arrays. Conway’s Chained Arrow Notation only goes up to recursion level 3 as 

it does not extend beyond 4-entry arrays. Since there is no limit to the number of entries allowed in 

Bird’s Linear Array Notation, it extends upwards to recursion level ω (the smallest infinite ordinal). In 

other words, the Linear Array Notation handles recursive functions with limit ordinal ω, which 

translates to limit ordinals of ω^ω and ω^ω^ω in the fast-growing and Hardy hierarchies of functions 

respectively. 

 

 

Examples 

 

Using Bird’s Linear Array Notation and Bird’s Extended Operator Notation, 

 {3, 3, 1} = {3, 3} 

              = 3 ^ 3 

              = 27, 

 {3, 3, 2} = 3 {2} 3 

              = 3 ^ (3 ^ 3) (since  a {1} b = a ^ b) 

              = 3 ^ 27 

              = 7,625,597,484,987, 

 {3, 3, 3} = 3 {3} 3 

              = 3 {2} (3 {2} 3) 

              = 3 {2} (3 ^ (3 ^ 3)) 

              = 3 {2} 7,625,597,484,987 

              = 3 ^ (3 ^ (3 ^ ( ... (3 ^ 3)...))) 

   (a power tower with 7,625,597,484,987 terms – even if every 3 in the stack 

    was as small as the thickness of a human hair, the tower would reach the 

    moon and back), 
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 {3, 3, 4} = 3 {4} 3 

              = 3 {3} (3 {3} 3) 

              = 3 {3} (3 ^ (3 ^ (3 ^ ( ... (3 ^ 3)...)))) (with 7,625,597,484,987 3’s in power tower) 

              = 3 {2} (3 {2} (3 {2} ( ... (3 {2} 3)...))) 

   (where the number of terms is a power tower of 7,625,597,484,987 3’s). 

 

While the number 

 {3, 2, 1, 2} = 3 {{1}} 2 

                  = 3 {3} 3, 

the number 

 {3, 3, 1, 2} = 3 {{1}} 3 

                  = 3 {3 {3} 3} 3 

and the number 

 {3, 4, 1, 2} = 3 {{1}} 4 

                  = 3 {3 {3 {3} 3} 3} 3. 

 

Since 

 {3, 65, 1, 2} = 3 {{1}} 65 

                    = 3 {3 {3 { ... {3 {3} 3} ... } 3} 3} 3 (with 65 3’s from centre out) 

and Graham’s Number is achieved by changing the 3 in the centre to a 4, it follows that 

 {3, 65, 1, 2} < (Graham’s Number) << {3, 66, 1, 2}. 

 

While the number 

 {3, 2, 2, 2} = 3 {{2}} 2 

                  = 3 {{1}} 3 

                  = 3 {3 {3} 3} 3 

                  = {3, 3, 1, 2}, 

the number 

 {3, 3, 2, 2} = 3 {{2}} 3 

                  = 3 {{1}} (3 {{1}} 3) 

                  = 3 {{1}} (3 {3 {3} 3} 3) 

                  = {3, (3 {3 {3} 3} 3), 1, 2} 

                  = {3, {3, 3, 1, 2}, 1, 2}, 

and so is very much larger than Graham’s Number. 

 

While the number 

 {3, 2, 3, 2} = 3 {{3}} 2 

                  = 3 {{2}} 3 

                  = {3, 3, 2, 2}, 

the number 

 {3, 3, 3, 2} = 3 {{3}} 3 

                  = 3 {{2}} (3 {{2}} 3) 

                  = {3, (3 {{2}} 3), 2, 2} 

                  = {3, {3, 3, 2, 2}, 2, 2}. 

 

While the number 

 {3, 2, 1, 3} = 3 {{{1}}} 2 

                  = 3 {{3}} 3 

                  = {3, 3, 3, 2}, 
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the number 

 {3, 3, 1, 3} = 3 {{{1}}} 3 

                  = 3 {{3 {{3}} 3}} 3 

                  = {3, 3, (3 {{3}} 3), 2} 

                  = {3, 3, {3, 3, 3, 2}, 2}. 

 

Since 

 {a, b, c, d} = a {{{..{c}..}}} b (with d pairs of curly brackets), 

the following numbers can be written as follows: 

 {3, 3, 3, 3} = 3 {{{3}}} 3, 

 {10, 10, 10, 10} = 10 {{{{{{{{{{10}}}}}}}}}} 10, 

 {10, 10, 100, 20} = 10 {{{{{{{{{{{{{{{{{{{{100}}}}}}}}}}}}}}}}}}}} 10. 

 

When the number of curly brackets in the Extended Operator Notation becomes large, it is easier to 

use the Linear Array Notation. 

 

While the number represented by 

 {a, 2, 1, 1, 2} = {a, a, a, a} 

                      = a {{{..{a}..}}} a (with a pairs of curly brackets), 

that represented by 

 {a, 3, 1, 1, 2} = {a, a, a, {a, 2, 1, 1, 2}} 

                      = a {{{..{a}..}}} a (with a {{{..{a}..}}} a pairs of curly brackets (with a pairs of 

      curly brackets)) 

and 

 {a, 4, 1, 1, 2} = {a, a, a, {a, 3, 1, 1, 2}} 

                      = a {{{..{a}..}}} a (with a {{{..{a}..}}} a pairs of curly brackets (with a {{{..{a}..}}} a 

      pairs of curly brackets (with a pairs of curly brackets))). 

 

In general, 

 {a, b, 1, 1, 2} = {a, a, a, {a, b-1, 1, 1, 2}} 

                      = a {{{..{a}..}}} a (with {a, b-1, 1, 1, 2} pairs of curly brackets). 

 

Hence, 

 {3, 5, 1, 1, 2} = 3 {{{..{3}..}}} 3 (with 3 {{{..{3}..}}} 3 pairs of curly brackets (with 3 {{{..{3}..}}} 3 

      pairs of curly brackets (with 3 {{{3}}} 3 pairs of curly 

      brackets))). 

 

Friedman’s n(k) function for k-character sequences in his Block Subsequence Theorem grows so 

rapidly that it approaches the limits of Bird’s Linear Array Notation. While 

 n(1) = 3, 

 n(2) = 11, 

 n(3) > {2, 158386, 7197}, 

 n(4) > {3, {2, 187196, 187195}, 1, 2}, 

the growth rate of n(k) is broadly comparable to the function 

 f(n) = {3, 3, 3, ... , 3}  (with n entries). 

 

Jonathan Bowers’ Array Notation can be visited at: http://www.polytope.net/hedrondude/array.htm 

 

 

http://www.polytope.net/hedrondude/array.htm
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