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The Fast-Growing Hierarchy in 
Terms of Bird’s Array Notations 

 

Let μ be a large countable ordinal such that a fundamental sequence (a strictly increasing sequence 

of ordinals whose supremum is a limit ordinal) is assigned to every limit ordinal less than μ. A 

fast-growing hierarchy of functions fα, for α < μ, is then defined as follows: 

 f0(n) = n+1, 

 fα+1(n) = fα
n
(n), 

 fα(n) = fα[n](n) (if α is a limit ordinal). 

Here fα
n
(n) = fα(fα(...(fα(n))...)) denotes the nth iterate of fα applied to n, and α[n] denotes the nth 

element of the fundamental sequence assigned to the limit ordinal α. The ordinal α[n] tends to α, as n 

tends to ω (supremum of the finite numbers). fα(1) = 2 for all α < μ. The function fα(n) is equivalent to 

hω^α(n) in the Hardy hierarchy of functions. 

 

Some examples of fundamental sequences are shown below. For limit ordinals λ, written in Cantor 

normal form: 

 If  λ = ω,  then  λ[n] = n; 

 if  λ = ω^α1 + ω^α2 + ... + ω^αk  for  α1 ≥ α2 ≥ ... ≥ αk, 

    then  λ[n] = ω^α1 + ω^α2 + ... + ω^αk-1 + (ω^αk)[n]; 

 if  λ = ω^(α+1),  then  λ[n] = (ω^α)n; 

 if  λ = ω^α  for a limit ordinal α, then  λ[n] = ω^(α[n]); 

 if  λ = ε0,  then  λ[0] = 0  and  λ[n+1] = ω^λ[n],  which is the same as  λ[n+1] = ω^^n; 

 if  λ = φ(α+1, 0),  then  λ[0] = 0  and  λ[n+1] = φ(α, λ[n]); 

 if  λ = φ(α+1, β+1),  then  λ[0] = φ(α+1, β) + 1  and  λ[n+1] = φ(α, λ[n]); 

 if  λ = φ(α, β)  for a limit ordinal β < λ, then  λ[n] = φ(α, β[n]); 

 if  λ = φ(α, 0)  for a limit ordinal α < λ, then  λ[n] = φ(α[n], 0); 

 if  λ = φ(α, β+1)  for a limit ordinal α, then  λ[n] = φ(α[n], φ(α, β) + 1); 

 if  λ = Γ0,  then  λ[0] = 0  and  λ[n+1] = φ(λ[n], 0). 

The φ function (Veblen function) shown is the binary (2-argument) version. The extended φ function 

(with any finite number of arguments) can have a string of one or more 0’s (or no arguments) in 

between the two arguments of the binary φ function shown in each of the λ formulae, and an arbitrary 

string of ordinal variables α1, α2, ... , αk prior to the first of the two arguments of the binary φ function – 

these values remain unchanged in the λ[n] formulae. 

 

The two-argument ordinal collapsing θ function used in the Beyond Bird’s Nested Arrays documents 

relates to the extended φ function as follows: 

 θ((Ω^k)αk + ... + (Ω^2)α2 + Ωα1 + α0, β) = φ(αk, ... , α2, α1, α0, β), 

where Ω denotes the smallest uncountable ordinal. The φ function can be extended further into 

transfinite arguments. When β = 0, the θ function can be written as a single argument function; for 

instance, θ(α) = θ(α, 0). The significance of Ω is that 

 θ(α+Ω)  is the limit of  θ(α+θ(α+θ(α+... , 

 θ(αΩ)  is the limit of  θ(αθ(αθ(α... , 

 θ(α^Ω)  is the limit of  θ(α^θ(α^θ(α^... , 

 θ(α1^α2^...^αk^Ω)  is the limit of  θ(α1^α2^...^αk^θ(α1^α2^...^αk^θ(α1^α2^...^αk^... . 

While θ(Ω) = Γ0 is the Feferman-Schütte ordinal, θ(Ω^ω) is the small Veblen ordinal (limit of φ function 

with finite arguments) and θ(Ω^Ω) is the large Veblen ordinal (an ordinal so large that the φ function  

would require as many arguments as the ordinal itself – in other words, the absolute limit of the φ 

function). 
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It can be shown that, for n ≥ 1 and k < ω, 

 f1(n) = 2n, 

 f2(n) = (2^n)n ≥ 2^n, 

 f3(n) ≥ 2^2^2^...^2^n (with n 2’s) 

         ≥ 2^^n  (using Knuth’s Up-arrow Notation), 

 f4(n) ≥ 2^^2^^...^^2^^n (with n 2’s) 

         ≥ 2^^^n, 

 fk(n) ≥ 2^^^
...

^n  (with k-1 up-arrows) 

         = {2, n, k-1} (using Bird’s Linear Array Notation), 

 fω(n) = fn(n) 

         ≥ {2, n, n-1}. 

 

Note that {a, b, 0} = ab, since Bird’s Linear Array Notation with 3 entries can be extended downwards 

by setting the third entry to 0. Exponentiation (single arrow) is repeated multiplication (no arrows) just 

as k arrows is repeated k-1 arrows. When n = 1, fω(1) = f1(1) = {2, n, n-1} = {2, 1, 0} = 2×1 = 2. 

 

The function fk(n) is primitive recursive for all k < ω. The fω(n) function diagonalises over the fk(n) 

functions (for finite k) and is the lowest function in the fast-growing hierarchy that is not primitive 

recursive. The single-argument Ackermann function grows as rapidly as fω(n). 

 

For n ≥ 2, 

 fω(n) = {2, n, n-1} 

         = {2, {2, n-1, n-1}, n-2} 

         > {n, n, n-2} + 2. 

This holds for n ≥ 4, since {2, 4, 3} = 2^^65,536 > 4^4^4^4 + 2 = {4, 4, 2} + 2 when n = 4. For higher 

values of n, the second entry of the 3-entry array ending in n-2 (height of (n-2)-arrow tower) is much 

more important than the first entry (number that is copied and placed at every storey of the tower). 

This is because, for each value of n ≥ 5, the arrays {2, {2, n-1, n-1}, n-2} = 2^^X and {n, n, n-2} = n^^Y, 

where X and Y are large integers, and since n < {2, n-1, n-1} < X, when 2^^X is written as the highest 

power tower of 2’s with a number equal to or greater than n on top, its height (call it X’) is still far 

greater than Y (height of power tower of n’s in n^^Y) – when evaluating power towers with the same 

numbers on top the heights are far more important than the numbers in the storeys (below the top). In 

fact, X’ is so much greater than Y that any comparisons between 2 and n pale into insignificance. 

 

The above result also holds for n = 2 and n = 3, since 

 fω(2) = f2(2) = 8 

         > {n, n, n-2} + 2 = {2, 2, 0} + 2 = 2×2 + 2 = 6, 

 fω(3) = f3(3) ≥ 2^2^2^3 = 2^256 

         > {n, n, n-2} + 2 = 29. 

 

For n ≥ 2, 

 fω+1(n) > {n, n, 1, 2} 

            = {n, n, {n, n, { ... {n, n, n}...}}}  (with n-1 pairs of curly brackets), 

as fω+1(n) = fω
n
(n) 

            > fω
n-1

(n+2) 

            > fω
n-2

({n, n, (n+2)-2} + 2) = fω
n-2

({n, n, n} + 2) 

            > fω
n-3

({n, n, ({n, n, n}+2)-2} + 2) = fω
n-3

({n, n, {n, n, n}} + 2) 

            > {n, n, {n, n, { ... {n, n, n}...}}}  (with n-1 pairs of curly brackets). 

This also holds for n = 1, since fω+1(1) = 2 > {1, 1, 1, 2} = 1. 
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fω+1(64) is greater than Graham’s Number since, for n ≥ 5, 

 fω(n) > {3, 3, n-2} + 2, 

which means that, 

 fω+1(64) > fω
64

(6) 

              > fω
63

({3, 3, 4} + 2) 

              > fω
62

({3, 3, {3, 3, 4}} + 2) 

              > fω
61

({3, 3, {3, 3, {3, 3, 4}}} + 2) 

              > {3, 3, {3, 3, { ... {3, 3, 4}...}}} (with 64 pairs of curly brackets, Graham’s Number). 

 

It can be shown that, for n ≥ 1 and k < ω, 

 fω+2(n) > {n, n, 2, 2}, 

 fω+3(n) > {n, n, 3, 2}, 

 fω+k(n) > {n, n, k, 2}, 

 fω2(n) = fω+n(n) > {n, n, n, 2}, 

 fω2+1(n) > {n, n, 1, 3}, 

 fω2+k(n) > {n, n, k, 3}, 

 fω3(n) > {n, n, n, 3}, 

 fωk(n) > {n, n, n, k}, 

 fω^2(n) = fωn(n) > {n, n, n, n} 

                         ≥ n → n → ... → n (with n entries, Conway’s Chained Arrow Notation), 

 fω^2 + 1(n) > {n, n, 1, 1, 2}, 

 fω^2 + k(n) > {n, n, k, 1, 2}, 

 fω^2 + ω(n) > {n, n, n, 1, 2}, 

 fω^2 + ω + k(n) > {n, n, k, 2, 2}, 

 fω^2 + ωk(n) > {n, n, n, k, 2}, 

 f(ω^2)2(n) > {n, n, n, n, 2}, 

 f(ω^2)k(n) > {n, n, n, n, k}, 

 fω^3(n) > {n, n, n, n, n}, 

 fω^k(n) > {n, n, n, ... , n}   (with k+2 n’s). 

 

Using Bird’s Multi-Dimensional Array Notation (in which a number in square brackets denotes a 

separator, a comma being a shorthand for [1] in this notation), 

 fω^ω(n) > {n, n+2 [2] 2} 

            = {n, n, n, ... , n}   (with n+2 n’s), 

 fω^ω + 1(n) > {n, n, 2 [2] 2}, 

 fω^ω + k(n) > {n, n, k+1 [2] 2}, 

 fω^ω + ω(n) > {n, n, n+1 [2] 2}, 

 fω^ω + ω + 1(n) > {n, n, 1, 2 [2] 2}, 

 fω^ω + ω + k(n) > {n, n, k, 2 [2] 2}, 

 fω^ω + ωk(n) > {n, n, n, k [2] 2}, 

 fω^ω + ω^2(n) > {n, n, n, n [2] 2}, 

 fω^ω + ω^k(n) > {n, n, n, ... , n [2] 2} (with k+2 n’s), 

 f(ω^ω)2(n) > {n, n+2 [2] 3} 

               = {n, n, n, ... , n [2] 2}  (with n+2 n’s), 

 f(ω^ω)k(n) > {n, n+2 [2] k+1} 

               = {n, n, n, ... , n [2] k}  (with n+2 n’s), 

 fω^(ω+1)(n) > {n, n, n, ... , n [2] n}  (with n+2 n’s before [2]), 

 fω^(ω+1) + 1(n) > {n, n [2] 1, 2}, 

 fω^(ω+1) + k(n) > {n, n, k [2] 1, 2}, 
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 fω^(ω+1) + ω(n) > {n, n, n [2] 1, 2}, 

 fω^(ω+1) + ω^k(n) > {n, n, ... , n [2] 1, 2}  (with k+2 n’s), 

 fω^(ω+1) + ω^ω(n) > {n, n, ... , n [2] 1, 2}  (with n+2 n’s), 

 fω^(ω+1) + (ω^ω)2(n) > {n, n, ... , n [2] 2, 2}  (with n+2 n’s), 

 fω^(ω+1) + (ω^ω)k(n) > {n, n, ... , n [2] k, 2}  (with n+2 n’s), 

 f(ω^(ω+1))2(n) > {n, n, ... , n [2] n, 2}  (with n+2 n’s before [2]), 

 f(ω^(ω+1))k(n) > {n, n, ... , n [2] n, k}  (with n+2 n’s before [2]), 

 fω^(ω+2)(n) > {n, n, ... , n [2] n, n}   (with n+2 n’s before [2]), 

 fω^(ω+k)(n) > {n, n, ... , n [2] n, n, ... , n}  (with n+2 n’s before [2] and k n’s after [2]), 

 fω^(ω2)(n) > {n, n, ... , n [2] n, n, ... , n}  (with n+2 n’s before [2] and n n’s after [2]), 

 fω^(ωk)(n) > {n,n,..,n [2] n,n,..,n [2] ... [2] n,n,..,n} (with k ‘rows’, each containing n n’s), 

 fω^ω^2(n) > {n, n [3] 2} 

               = {n,n,..,n [2] n,n,..,n [2] ... [2] n,n,..,n} (2 dimensional n^2 array of n’s), 

 fω^ω^3(n) > {n, n [4] 2} 

               = {n,n,..,n [2] n,n,..,n [2] ... [2] n,n,..,n [3] 

                   n,n,..,n [2] n,n,..,n [2] ... [2] n,n,..,n [3] 

                   ..................................................... [3] 

                   n,n,..,n [2] n,n,..,n [2] ... [2] n,n,..,n} (3 dimensional n^3 array of n’s), 

 fω^ω^k(n) > {n, n [k+1] 2}    (k dimensional n^k array of n’s). 

 

Using Bird’s Hyper-Dimensional Array Notation (in which the separators themselves become arrays), 

 fω^ω^ω(n) > {n, n [1, 2] 2} 

                = {n, n [n+1] 2}    (n dimensional n^n array of n’s), 

 fω^ω^(ω+k)(n) > {n, n [k+1, 2] 2}, 

 fω^ω^(ω2)(n) > {n, n [1, 3] 2}, 

 fω^ω^(ωk)(n) > {n, n [1, k+1] 2}, 

 fω^ω^ω^2(n) > {n, n [1, 1, 2] 2}, 

 fω^ω^ω^k(n) > {n, n [1, 1, ... , 1, 2] 2}  (with k 1’s). 

 

Using Bird’s Nested Array Notation (in which separator arrays can be nested inside themselves), 

 fω^ω^ω^ω(n) > {n, n [1 [2] 2] 2}, 

 fω^ω^ω^ω^2(n) > {n, n [1 [3] 2] 2}, 

 fω^ω^ω^ω^k(n) > {n, n [1 [k+1] 2] 2}, 

 fω^ω^ω^ω^ω(n) > {n, n [1 [1, 2] 2] 2}, 

 fω^ω^ω^ω^ω^2(n) > {n, n [1 [1, 1, 2] 2] 2}, 

 fω^ω^ω^ω^ω^k(n) > {n, n [1 [1, 1, ... , 1, 2] 2] 2} (with k 1’s), 

 fω^^6(n) > {n, n [1 [1 [2] 2] 2] 2}, 

 fω^^7(n) > {n, n [1 [1 [1, 2] 2] 2] 2}, 

 fω^^8(n) > {n, n [1 [1 [1 [2] 2] 2] 2] 2}. 

 

In general, for 2 ≤ k < ω, 

 fω^^k(n) > {n, n [1 [1 [ ... [1 [1, 2] 2] ... ] 2] 2] 2} (with (k-1)/2 pairs of square brackets, k odd) 

             > {n, n [1 [1 [ ... [1 [2] 2] ... ] 2] 2] 2} (with k/2 pairs of square brackets, k even). 

This has limit ordinal ε0 in the fast-growing hierarchy. 

 

Each new entry in the array adds one to the corresponding power of ω in the f subscript, each new 

row adds ω to the power of ω, each new plane adds ω^2 to the power of ω, and so on. Each new 

dimension adds one to the corresponding power of ω^ω, each new entry in a separator array adds 

one to the power of ω^ω^ω, each new dimension within it adds one to the power of ω^ω^ω^ω, each 
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new entry in a separator array within a separator array adds one to the power of ω^ω^ω^ω^ω, and so 

on. Turning a single-entry separator (within various levels or nests of separator arrays, if any) into a 

linear array (separated by commas or [1]’s) adds one to the corresponding height of the exponential 

tower of ω’s; turning it into a multi-dimensional array (separated by [2]’s or higher) adds two to the 

height of the ω power tower. 

 

The limit ordinals of Knuth’s Up-arrow Notation, Conway’s Chained Arrow Notation and Bird’s Array 

Notations thus far, in the fast-growing hierarchy, are shown below: 

 

Notation Limit ordinal Fast-growing functions at limit ordinal 

Knuth’s Up-arrows ω Ackermann Function 

Conway’s Chained Arrows ω^2 

Bird’s Linear Arrays ω^ω Friedman’s n(k) (Block Subsequence Theorem) 

Bird’s Multi-Dimensional Arrays  ω^ω^ω 

Bird’s Hyper-Dimensional Arrays  ω^ω^ω^ω 

Bird’s Nested Arrays ε0 Goodstein Sequence, Fusible Numbers 

 

We now proceed into Bird’s Hyper-Nested Arrays (see Beyond Bird’s Nested Arrays I and II) and 

Nested Hyper-Nested Arrays (see Beyond Bird’s Nested Arrays III). Since fω^^(2n-1)(n) > {n, n [1 \ 2] 2} 

grows twice as fast as fε0(n) = fω^^(n-1)(n), and the sequence {n, n [1 \ k+3] 2}, for some k, grows 

somewhat more quickly than fεk+1(n) = fω^ω^...^ω^(εk+1)(n) (with n ω’s), it can be shown that 

 fε0 + 1(n) > {n, n [1 \ 2] 2}, 

 fεk + 1(n) > {n, n [1 \ k+2] 2}, 

 fεω(n) > {n, n [1 \ 1, 2] 2}, 

 fε(ε0) + 1(n) > {n, n [1 \ 1 [1 \ 2] 2] 2}, 

 fζ0(n) = fφ(2, 0)(n) > {n, n [1 \ 1 \ 2] 2}, 

 fφ(3, 0)(n) > {n, n [1 \ 1 \ 1 \ 2] 2}, 

 fφ(k, 0)(n) > {n, n [1 \ 1 \ ... \ 1 \ 2] 2}  (with k 1’s), 

 fφ(ω, 0)(n) > {n, n [1 [2 ¬ 2] 2] 2}   (\ is shorthand for [1 ¬ 2]), 

 fφ(ω^k, 0)(n) > {n, n [1 [k+1 ¬ 2] 2] 2}, 

 fφ(ω^ω, 0)(n) > {n, n [1 [1, 2 ¬ 2] 2] 2}, 

 fφ(ω^ω^ω, 0)(n) > {n, n [1 [1 [2] 2 ¬ 2] 2] 2}, 

 fφ(ω^ω^ω^ω, 0)(n) > {n, n [1 [1 [1, 2] 2 ¬ 2] 2] 2}, 

 fφ(ε0, 0) + 1(n) > {n, n [1 [1 \ 2 ¬ 2] 2] 2}, 

 fφ(φ(ω, 0), 0)(n) > {n, n [1 [1 [2 ¬ 2] 2 ¬ 2] 2] 2}, 

 fφ(φ(ε0, 0), 0) + 1(n) > {n, n [1 [1 [1 \ 2 ¬ 2] 2 ¬ 2] 2] 2}, 

 fΓ0(n) = fθ(Ω)(n) > {n, n [1 [1 ¬ 3] 2] 2}  (θ is an ordinal collapsing function), 

 fφ(1, 0, 0, 0)(n) = fθ(Ω^2)(n) > {n, n [1 [1 ¬ 4] 2] 2}, 

 fθ(Ω^k)(n) > {n, n [1 [1 ¬ k+2] 2] 2}, 

 fθ(Ω^ω)(n) > {n, n [1 [1 ¬ 1, 2] 2] 2}  (growth rate small Veblen ordinal), 

 fθ(Ω^Ω)(n) > {n, n [1 [1 ¬ 1 ¬ 2] 2] 2}  (growth rate large Veblen ordinal), 

 fθ(Ω^Ω^ω)(n) > {n, n [1 [1 [2 \3 2] 2] 2] 2}  (¬ or \2 is shorthand for [1 \3 2]), 

 fθ(Ω^Ω^Ω)(n) > {n, n [1 [1 [1 \3 3] 2] 2] 2}, 

 fθ(Ω^Ω^Ω^Ω)(n) > {n, n [1 [1 [1 \3 1 \3 2] 2] 2] 2}, 

 fθ(Ω^Ω^Ω^Ω^Ω)(n) > {n, n [1 [1 [1 [1 \4 3] 2] 2] 2] 2} (\k is shorthand for [1 \k+1 2]). 

 

The rate of growth of Friedman’s TREE sequence (finite form of Kruskal’s Tree Theorem) exceeds 

that of fΓ0(n). There is a less rigorous proof that the growth rate exceeds that of fθ(Ω^ω)(n). See page 10 

of Beyond Bird’s Nested Arrays II for more details on this function. 
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Separators of the form  [X1 \ X2 \ ... \ Xk]  (where the Xi are strings of characters and the backslash is a 

hyperseparator marking successive levels of the binary φ function, represented by the left-hand 

argument) provide the foundations of Bird’s Hyper-Nested Arrays – X1 corresponds to ordinary 

addition, multiplication and exponentiation (or the φ(0, α) function); X2 corresponds to the epsilon 

numbers (φ(1, α)) and Xk corresponds to ordinals of the form φ(k-1, α). For example, the separator 

 [n1+1 \ n2+1 \ ... \ nk-1+1 \ nk+2] 

where n1, n2, n3, ... , nk are non-negative integers, corresponds to the ordinal 

 ε(ζ(φ(3, φ( ... φ(k-2, φ(k-1, nk) + nk-1) ... ) + n4) + n3) + n2) ^ ω ^ n1 

in the fast-growing hierarchy, i.e. when α is the above ordinal, 

 fα(n) > {n, n [n1+1 \ n2+1 \ ... \ nk-1+1 \ nk+2] 2}. 

The [2 ¬ 2] hyperseparator (backslash is [1 ¬ 2] while ¬ is a 2-hyperseparator) gets us beyond φ(ω, 0) 

and into the second dimension of ‘hyperspace’, while nested levels of [ ¬ 2] inside [ ¬ 2] enable us to 

reach Γ0 and the [1 ¬ 3] hyperseparator. Nesting on the right-hand side of the ¬ sign leads us to the 

large Veblen ordinal and ¬ chains. Then by analogy of ¬ with \ we repeat this process to create higher 

order hyperseparators \3, \4, \5 and so on, where \k is a k-hyperseparator and shorthand for [1 \k+1 2]. 

The limit ordinal of all of this is θ(εΩ+1), the Bachmann-Howard ordinal. 

 

When X is a string of characters such that [X] is a separator with level α (separates α dimensional 

spaces – containing up to ω^α arguments – within an array, e.g. comma or [1] has level 0, [n+1] has 

level n, [1, 2] has level ω, [1 \ 2] has level ε0), then 

 fω^ω^α + 1(n) > {n, n [X] 2}. 

 

In fact, 

 fω^ω^α(n) > {n, n [X] 2} 

holds true in virtually all cases. It holds true for all 0 ≤ α < ε0, but not when α is ε0 or an epsilon 

number of the form εβ+1, ε(ε(ε(...(ε0)...))) or ε(ε(ε(...(εβ+1)...))), where there are a finite number of ε’s in 

the expression. 

 

It can be shown that, for n ≥ 1, k < ω and [X] being larger than all of the other separators in the array, 

 fω^ω^α + 2(n) > {n, n, 2 [X] 2}, 

 fω^ω^α + k(n) > {n, n, k [X] 2}, 

 fω^ω^α + ω(n) > {n, n, n [X] 2}, 

 fω^ω^α + ω + k(n) > {n, n, k, 2 [X] 2}, 

 fω^ω^α + ωk(n) > {n, n, n, k [X] 2}, 

 fω^ω^α + ω^2(n) > {n, n, n, n [X] 2}, 

 fω^ω^α + ω^k(n) > {n, n, n, ... , n [X] 2}  (with k+2 n’s), 

 fω^ω^α + ω^ω(n) > {n, n+2 [2] 2 [X] 2} 

                       = {n, n, n, ... , n [X] 2}  (with n+2 n’s), 

 fω^ω^α + ω^ω^k(n) > {n, n [k+1] 2 [X] 2}  (k dimensional n^k array of n’s before [X]), 

 fω^ω^α + ω^ω^ω(n) > {n, n [1, 2] 2 [X] 2} 

                          = {n, n [n+1] 2 [X] 2}  (n dimensional n^n array of n’s before [X]), 

 fω^ω^α + ω^ω^ω^ω(n) > {n, n [1 [2] 2] 2 [X] 2}, 

 fω^ω^α + ω^ω^ω^ω^ω(n) > {n, n [1 [1, 2] 2] 2 [X] 2}, 

 fω^ω^α + ε0 + 1(n) > {n, n [1 \ 2] 2 [X] 2}, 

 fω^ω^α + φ(ω, 0)(n) > {n, n [1 [2 ¬ 2] 2] 2 [X] 2}, 

 fω^ω^α + Γ0(n) > {n, n [1 [1 ¬ 3] 2] 2 [X] 2}, 

 fω^ω^α + θ(Ω^Ω)(n) > {n, n [1 [1 ¬ 1 ¬ 2] 2] 2 [X] 2}, 

 f(ω^ω^α)2 + 1(n) > {n, n [X] 3}, 

 f(ω^ω^α)k + 1(n) > {n, n [X] k+1}, 
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 fω^(ω^α + 1)(n) > {n, n [X] n+1}, 

 fω^(ω^α + 1) + 1(n) > {n, n [X] 1, 2}, 

 fω^(ω^α + 1) + (ω^ω^α)k + 1(n) > {n, n [X] k+1, 2}, 

 f(ω^(ω^α + 1))2(n) > {n, n [X] n+1, 2}, 

 f(ω^(ω^α + 1))k(n) > {n, n [X] n+1, k}, 

 fω^(ω^α + 2)(n) > {n, n [X] n+1, n}, 

 fω^(ω^α + 2) + 1(n) > {n, n [X] 1, 1, 2}, 

 fω^(ω^α + k) + 1(n) > {n, n [X] 1, 1, ... , 1, 2}  (with k 1’s), 

 fω^(ω^α + ω)(n) > {n, n [X] 1 [2] 2}, 

 fω^(ω^α + ω^k)(n) > {n, n [X] 1 [k+1] 2}, 

 fω^(ω^α + ω^ω)(n) > {n, n [X] 1 [1, 2] 2} 

                         = {n, n [X] 1 [n+1] 2}, 

 fω^(ω^α + ω^ω^ω)(n) > {n, n [X] 1 [1 [2] 2] 2}, 

 fω^(ω^α + ω^ω^ω^ω)(n) > {n, n [X] 1 [1 [1, 2] 2] 2}, 

 f(ω^ω^α)ε0 + 1(n) > {n, n [X] 1 [1 \ 2] 2}, 

 f(ω^ω^α)φ(ω, 0)(n) > {n, n [X] 1 [1 [2 ¬ 2] 2] 2}, 

 f(ω^ω^α)Γ0(n) > {n, n [X] 1 [1 [1 ¬ 3] 2] 2}, 

 f(ω^ω^α)θ(Ω^Ω)(n) > {n, n [X] 1 [1 [1 ¬ 1 ¬ 2] 2] 2}, 

 fω^((ω^α)2) + 1(n) > {n, n [X] 1 [X] 2}, 

 fω^((ω^α)k) + 1(n) > {n, n [X] 1 [X] 1 ... [X] 1 [X] 2} (with k [X]’s), 

 fω^ω^(α+1)(n) > {n, n [X’] 2} 

   (where [X’] is identical to [X] except that the first entry is increased by 1). 

 

When α = θ(εΩ+1) (the Bachmann-Howard ordinal), we can take λ = εΩ+1 and build the fundamental 

sequence as follows: 

 α[n] = θ(λ[n]), where λ[0] = 0 and λ[n+1] = Ω^λ[n]. 

The first few ordinals of α[n] are: 

 α[0] = θ(0) = 1, 

 α[1] = θ(1) = ε0, 

 α[2] = θ(Ω) = Γ0, 

 α[3] = θ(Ω^Ω). 

 

Since fα(n) = fα[n](n), 

 fε0(1) = 2, 

 fΓ0(2) > {2, 2 [1 [1 ¬ 3] 2] 2} = 4  (as array reduces to {2, 2} = 2^2 = 4), 

 fθ(Ω^Ω)(3) > {3, 3 [1 [1 ¬ 1 ¬ 2] 2] 2}, 

 fθ(Ω^Ω^Ω)(4) > {4, 4 [1 [1 [1 \3 3] 2] 2] 2}, 

 fθ(Ω^Ω^Ω^Ω)(5) > {5, 5 [1 [1 [1 \3 1 \3 2] 2] 2] 2}, 

 fθ(Ω^Ω^Ω^Ω^Ω)(6) > {6, 6 [1 [1 [1 [1 \4 3] 2] 2] 2] 2}. 

 

In general, 

 fα(n) > {n, n  [1 [1 [ ... [1 [1 \(n+1)/2 1 \(n+1)/2 2] 2] ... ] 2] 2]  2} 

      (with (n+1)/2 pairs of square brackets, n odd) 

         > {n, n  [1 [1 [ ... [1 [1 \(n+2)/2 3] 2] ... ] 2] 2]  2} 

      (with (n+2)/2 pairs of square brackets, n even). 

 

The H(n) function at the end of Beyond Bird’s Nested Arrays III grows twice as rapidly as fα(n). 

However H(n) grows more slowly than the function fα+1(n) when α is the Bachmann-Howard ordinal. 
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Far greater ordinals exist beyond the Bachmann-Howard ordinal. Some examples are shown below 

(the dots denote an infinite sequence): 

 θ(εΩ+1^Ω) = θ(εΩ+1^θ(εΩ+1^θ(εΩ+1^...))), 

 θ(εΩ+1^εΩ+1) = θ(εΩ+1^Ω^Ω^Ω^...), 

 θ(εΩ+2) = θ(εΩ+1^εΩ+1^εΩ+1^...), 

 θ(εΩ2) = θ(ε(Ω+θ(ε(Ω+θ(ε(Ω+...)))))), 

 θ(ζΩ+1) = θ(φ(2, Ω+1)) = θ(ε(Ω+ε(Ω+ε(Ω+...)))), 

 θ(φ(Ω, 1)) = θ(φ(θ(φ(θ(φ(...θ(φ(θ(εΩ+1), Ω+1)), ... , Ω+1)), Ω+1)), Ω+1)), 

 θ(Ω2) = θ(ΓΩ+1) = θ(φ(φ(φ(...φ(φ(Ω, 1), 0), ... , 0), 0), 0)), 

 θ(εΩ2+1) = θ(Ω2^Ω2^Ω2^...), 

 θ(Ω3) = θ(ΓΩ2+1) = θ(φ(φ(φ(...φ(φ(Ω2, 1), 0), ... , 0), 0), 0)), 

 θ(Ωω), 

 θ(ΩΩ) = θ(Ωθ(Ωθ(Ω...))), 

 θ(ΩΩΩ...). 

 

The ordinal Ωα is the αth uncountable ordinal in the sequence starting from Ω1 = Ω, and may be 

thought of as a cardinal number (similar to the Aleph numbers). (The countable ordinal Ω0 = ω.) The 

ordinal θ(ΩΩΩ...) is by no means the largest ordinal ever written down, as it only represents the first 

fixed point of α = Ωα within the θ function, and we can create a whole new ‘superfunction’ of cardinal 

numbers analogous to the θ function for ordinals in order to create even more hypergigantic ordinals! 

 

Bird’s Hierarchical Hyper-Nested Array Notation (see Beyond Bird’s Nested Arrays IV) looks much the 

same as Nested Hyper-Nested Arrays (in the previous document) except that it is made much more 

powerful, with mixing of higher order hyperseparators of various levels on the same square bracket 

layer allowed as well as modifications made to Angle Bracket Rule A5. The various levels of the 

hyperseparators are arranged in a strict hierarchy – not only does an (n+1)-hyperseparator outrank 

any n-hyperseparator but (n+1)-hyperseparators are only used when n-hyperseparators have been 

completely exhausted (the lowest level of separators are normal separators or 0-hyperseparators). 

This notation uses forward slashes instead of backslashes (e.g. \n becomes /n), in order to avoid 

confusion with the previous notation. The ~ symbol can be written in place of /2 if this makes separator 

expressions easier to read. Examples include the following: 

 fε0 + 1(n) > {n, n [1 / 2] 2}, 

 fεk + 1(n) > {n, n [1 / k+2] 2}, 

 fε(ε0) + 1(n) > {n, n [1 / 1 [1 / 2] 2] 2}, 

 fζ0(n) = fφ(2, 0)(n) > {n, n [1 / 1 / 2] 2}, 

 fφ(ω, 0)(n) > {n, n [1 [2 /2 2] 2] 2}   (/ is shorthand for [1 /2 2]), 

 fφ(ω^ω, 0)(n) > {n, n [1 [1, 2 /2 2] 2] 2}, 

 fφ(ω^ω^ω, 0)(n) > {n, n [1 [1 [2] 2 /2 2] 2] 2}, 

 fφ(ω^ω^ω^ω, 0)(n) > {n, n [1 [1 [1, 2] 2 /2 2] 2] 2}, 

 fφ(ε0, 0) + 1(n) > {n, n [1 [1 [1 / 2] 2 /2 2] 2] 2}, 

 fφ(φ(ε0, 0), 0) + 1(n) > {n, n [1 [1 [1 [1 [1 / 2] 2 /2 2] 2] 2 /2 2] 2] 2}, 

 fΓ0(n) = fθ(Ω)(n) > {n, n [1 [1 / 2 /2 2] 2] 2}, 

 fφ(1, 0, 0, 0)(n) = fθ(Ω^2)(n) > {n, n [1 [1 / 3 /2 2] 2] 2}, 

 fθ(Ω^ω)(n) > {n, n [1 [1 / 1, 2 /2 2] 2] 2}  (growth rate small Veblen ordinal), 

 fθ(Ω^Ω)(n) > {n, n [1 [1 / 1 / 2 /2 2] 2] 2}  (growth rate large Veblen ordinal), 

 fθ(Ω^Ω^ω)(n) > {n, n [1 [1 [2 /2 2] 2 /2 2] 2] 2}, 

 fθ(Ω^Ω^Ω)(n) > {n, n [1 [1 [1 / 2 /2 2] 2 /2 2] 2] 2}, 

 fθ(Ω^Ω^Ω^Ω)(n) > {n, n [1 [1 [1 / 1 / 2 /2 2] 2 /2 2] 2] 2}, 

 fθ(Ω^Ω^Ω^Ω^Ω)(n) > {n, n [1 [1 [1 [1 / 2 /2 2] 2 /2 2] 2 /2 2] 2] 2}, 
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 fθ(εΩ+1) + 1(n) > {n, n [1 [1 /2 3] 2] 2}  (growth rate Bachmann-Howard ordinal), 

 fθ(εΩ+1^2) + 1(n) > {n, n [1 [1 [1 /2 3] 2 /2 3] 2] 2}, 

 fθ(εΩ+1^εΩ+1) + 1(n) > {n, n [1 [1 [1 /2 3] 1 [1 /2 3] 2 /2 3] 2] 2}, 

 fθ(εΩ+1^εΩ+1^εΩ+1) + 1(n) > {n, n [1 [1 [1 [1 /2 3] 2 /2 3] 2 /2 3] 2] 2}, 

 fθ(εΩ+2) + 1(n) > {n, n [1 [1 /2 4] 2] 2}, 

 fθ(εΩ2)(n) > {n, n [1 [1 /2 1 / 2] 2] 2}, 

 fθ(εΩ^2)(n) > {n, n [1 [1 /2 1 / 1 / 2] 2] 2}, 

 fθ(εΩ^Ω)(n) > {n, n [1 [1 /2 1 [1 / 2 /2 2] 2] 2] 2}, 

 fθ(ε(εΩ+1)) + 1(n) > {n, n [1 [1 /2 1 [1 /2 3] 2] 2] 2}, 

 fθ(ε(ε(εΩ+1))) + 1(n) > {n, n [1 [1 /2 1 [1 /2 1 [1 /2 3] 2] 2] 2] 2}, 

 fθ(ζΩ+1)(n) = fθ(θ1(2))(n) > {n, n [1 [1 /2 1 /2 2] 2] 2} (θ1 is an ordinal collapsing function within θ), 

 fθ(θ1(3))(n) > {n, n [1 [1 /2 1 /2 1 /2 2] 2] 2}, 

 fθ(θ1(ω))(n) > {n, n [1 [1 [2 /3 2] 2] 2] 2}  (/k is shorthand for [1 /k+1 2]), 

 fθ(θ1(θ(θ1(1)))) + 1(n) > {n, n [1 [1 [1 [1 [1 /2 3] 2] 2 /3 2] 2] 2] 2} (θ1(1) = εΩ+1), 

 fθ(θ1(θ(θ1(θ(θ1(1)))))) + 1(n) > {n, n [1 [1 [1 [1 [1 [1 [1 [1 /2 3] 2] 2 /3 2] 2] 2] 2 /3 2] 2] 2] 2}, 

 fθ(θ1(Ω))(n) > {n, n [1 [1 [1 / 2 /3 2] 2] 2] 2}, 

 fθ(θ1(Ω^Ω))(n) > {n, n [1 [1 [1 / 1 / 2 /3 2] 2] 2] 2}, 

 fθ(θ1(Ω^Ω^Ω))(n) > {n, n [1 [1 [1 [1 / 2 /2 2] 2 /3 2] 2] 2] 2}, 

 fθ(θ1(θ1(1))) + 1(n) > {n, n [1 [1 [1 [1 /2 3] 2 /3 2] 2] 2] 2}, 

 fθ(θ1(θ1(θ1(1)))) + 1(n) > {n, n [1 [1 [1 [1 [1 [1 /2 3] 2 /3 2] 2] 2 /3 2] 2] 2] 2}, 

 fθ(Ω2)(n) > {n, n [1 [1 [1 /2 2 /3 2] 2] 2] 2}, 

 fθ(Ω2^Ω2)(n) > {n, n [1 [1 [1 /2 1 /2 2 /3 2] 2] 2] 2}, 

 fθ(Ω2^Ω2^Ω2)(n) > {n, n [1 [1 [1 [1 /2 2 /3 2] 2 /3 2] 2] 2] 2}, 

 fθ(ε(Ω2+1)) + 1(n) = fθ(θ2(1)) + 1(n) > {n, n [1 [1 [1 /3 3] 2] 2] 2}, 

 fθ(ζ(Ω2+1))(n) = fθ(θ2(2))(n) > {n, n [1 [1 [1 /3 1 /3 2] 2] 2] 2}, 

 fθ(θ2(ω))(n) > {n, n [1 [1 [1 [2 /4 2] 2] 2] 2] 2}, 

 fθ(θ2(Ω))(n) > {n, n [1 [1 [1 [1 / 2 /4 2] 2] 2] 2] 2}, 

 fθ(θ2(Ω2))(n) > {n, n [1 [1 [1 [1 /2 2 /4 2] 2] 2] 2] 2}, 

 fθ(θ2(θ2(1))) + 1(n) > {n, n [1 [1 [1 [1 [1 /3 3] 2 /4 2] 2] 2] 2] 2}, 

 fθ(θ2(θ2(θ2(1)))) + 1(n) > {n, n [1 [1 [1 [1 [1 [1 [1 /3 3] 2 /4 2] 2] 2 /4 2] 2] 2] 2] 2}, 

 fθ(Ω3)(n) > {n, n [1 [1 [1 [1 /3 2 /4 2] 2] 2] 2] 2}, 

 fθ(ε(Ω3+1)) + 1(n) = fθ(θ3(1)) + 1(n) > {n, n [1 [1 [1 [1 /4 3] 2] 2] 2] 2}, 

 fθ(ζ(Ω3+1))(n) = fθ(θ3(2))(n) > {n, n [1 [1 [1 [1 /4 1 /4 2] 2] 2] 2] 2}, 

 fθ(θ3(ω))(n) > {n, n [1 [1 [1 [1 [2 /5 2] 2] 2] 2] 2] 2}, 

 fθ(Ω4)(n) > {n, n [1 [1 [1 [1 [1 /4 2 /5 2] 2] 2] 2] 2] 2}, 

 fθ(Ω5)(n) > {n, n [1 [1 [1 [1 [1 [1 /5 2 /6 2] 2] 2] 2] 2] 2] 2}, 

 fθ(Ω6)(n) > {n, n [1 [1 [1 [1 [1 [1 [1 /6 2 /7 2] 2] 2] 2] 2] 2] 2] 2}. 

The limit ordinal of Bird’s Hierarchical Hyper-Nested Arrays is θ(Ωω). 

 

The U(n) function at the end of Beyond Bird’s Nested Arrays IV grows as rapidly as fθ(Ωω)(n), which is 

also the growth rate of the Extended Kruskal Theorem (Kruskal’s Tree Theorem extended to labelled 

trees, which have vertices labelled from 1 to n), the Graph Minor Theorem (or Subcubic Graph 

Numbers) and Buchholz Hydras (with ω labels removed). 

 

Beyond Bird’s Nested Arrays V introduces extensions to the Hierarchical Hyper-Nested Arrays 

created in the fourth Beyond Bird’s Nested Arrays document, in which the single-value forward slash 

subscript itself becomes an array, a nested array, or even a nested subscript array. Also, these 

subscript arrays may be affixed to the inside of the square bracket separators, as long as each of 



10 
 

these contains a ‘higher’ subscript array attached to a slash (anywhere within the separator). 

Examples include the following: 

 fθ(Ωω)(n) > {n, n [1 [2 /1,2 2] 2] 2}, 

 fθ(θ1(Ωω), 1)(n) > {n, n [1 [2 /1,2 2] 3] 2}, 

 fθ(θ2(Ωω), 1)(n) > {n, n [1 [1 [2 /1,2 2 2] 3] 2] 2}, 

 fθ(θ3(Ωω), 1)(n) > {n, n [1 [1 [1 [2 /1,2 2 3] 3] 2] 2] 2} 

   (●k is used as shorthand for [2 /1,2 2 k] at the beginning of the document), 

 fθ(Ωω, 1)(n) > {n, n [1 [3 /1,2 2] 2] 2}, 

 fθ(Ωω+1)(n) > {n, n [1 [1 /1,2 3] 2] 2}, 

 fθ(Ωω2)(n) > {n, n [1 [1 /1,2 1 /1,2 2] 2] 2}, 

 fθ(Ωω^ω)(n) > {n, n [1 [1 [2 /2,2 2] 2] 2] 2}, 

 fθ(Ωω^Ωω)(n) > {n, n [1 [1 [1 /1,2 2 /2,2 2] 2] 2] 2}, 

 fθ(ε(Ωω+1)) + 1(n) = fθ(θω(1)) + 1(n) > {n, n [1 [1 [1 /2,2 3] 2] 2] 2}, 

 fθ(ζ(Ωω+1))(n) = fθ(θω(2))(n) > {n, n [1 [1 [1 /2,2 1 /2,2 2] 2] 2] 2}, 

 fθ(θω(ω))(n) > {n, n [1 [1 [1 [2 /3,2 2] 2] 2] 2] 2}, 

 fθ(θω(Ω))(n) > {n, n [1 [1 [1 [1 / 2 /3,2 2] 2] 2] 2] 2}, 

 fθ(θω(Ωω))(n) > {n, n [1 [1 [1 [1 /1,2 2 /3,2 2] 2] 2] 2] 2}, 

 fθ(Ωω+1)(n) > {n, n [1 [1 [1 [1 /2,2 2 /3,2 2] 2] 2] 2] 2}, 

 fθ(Ωω+2)(n) > {n, n [1 [1 [1 [1 [1 /3,2 2 /4,2 2] 2] 2] 2] 2] 2}, 

 fθ(Ωω+3)(n) > {n, n [1 [1 [1 [1 [1 [1 /4,2 2 /5,2 2] 2] 2] 2] 2] 2] 2}, 

 fθ(Ωω2)(n) > {n, n [1 [1 [2 /1,3 2] 2] 2] 2}, 

 fθ(Ωω2+1)(n) > {n, n [1 [1 [1 /1,3 3] 2] 2] 2}, 

 fθ(Ωω22)(n) > {n, n [1 [1 [1 /1,3 1 /1,3 2] 2] 2] 2}, 

 fθ(Ωω2^Ωω2)(n) > {n, n [1 [1 [1 [1 /1,3 2 /2,3 2] 2] 2] 2] 2}, 

 fθ(ε(Ωω2+1)) + 1(n) = fθ(θω2(1)) + 1(n) > {n, n [1 [1 [1 [1 /2,3 3] 2] 2] 2] 2}, 

 fθ(Ωω2+1)(n) > {n, n [1 [1 [1 [1 [1 /2,3 2 /3,3 2] 2] 2] 2] 2] 2}, 

 fθ(Ωω2+2)(n) > {n, n [1 [1 [1 [1 [1 [1 /3,3 2 /4,3 2] 2] 2] 2] 2] 2] 2} 

   (//k and ///k are used as shorthand for /k,2 and /k,3 respectively on pages 5-21), 

 fθ(Ωω3)(n) > {n, n [1 [1 [1 [2 /1,4 2] 2] 2] 2] 2}, 

 fθ(Ωω4)(n) > {n, n [1 [1 [1 [1 [2 /1,5 2] 2] 2] 2] 2] 2}, 

 fθ(Ωω^2)(n) > {n, n [1 [2 /1,1,2 2] 2] 2}, 

 fθ(Ωω^2+1)(n) > {n, n [1 [1 /1,1,2 3] 2] 2}, 

 fθ(Ωω^22)(n) > {n, n [1 [1 /1,1,2 1 /1,1,2 2] 2] 2}, 

 fθ(Ωω^2^Ωω^2)(n) > {n, n [1 [1 [1 /1,1,2 2 /2,1,2 2] 2] 2] 2}, 

 fθ(ε(Ωω^2+1)) + 1(n) = fθ(θω^2(1)) + 1(n) > {n, n [1 [1 [1 /2,1,2 3] 2] 2] 2}, 

 fθ(Ωω^2+1)(n) > {n, n [1 [1 [1 [1 /2,1,2 2 /3,1,2 2] 2] 2] 2] 2}, 

 fθ(Ωω^2+2)(n) > {n, n [1 [1 [1 [1 [1 /3,1,2 2 /4,1,2 2] 2] 2] 2] 2] 2}, 

 fθ(Ωω^2+ω)(n) > {n, n [1 [1 [2 /1,2,2 2] 2] 2] 2}, 

 fθ(Ωω^2+ω2)(n) > {n, n [1 [1 [1 [2 /1,3,2 2] 2] 2] 2] 2}, 

 fθ(Ω(ω^2)2)(n) > {n, n [1 [1 [2 /1,1,3 2] 2] 2] 2}, 

 fθ(Ω(ω^2)3)(n) > {n, n [1 [1 [1 [2 /1,1,4 2] 2] 2] 2] 2}, 

 fθ(Ωω^3)(n) > {n, n [1 [2 /1,1,1,2 2] 2] 2}, 

 fθ(Ωω^4)(n) > {n, n [1 [2 /1,1,1,1,2 2] 2] 2}, 

 fθ(Ωω^ω)(n) > {n, n [1 [2 /1 [2] 2 2] 2] 2}, 

 fθ(Ωω^ω^2)(n) > {n, n [1 [2 /1 [3] 2 2] 2] 2}, 

 fθ(Ωω^ω^ω)(n) > {n, n [1 [2 /1 [1,2] 2 2] 2] 2}, 

 fθ(Ωω^ω^ω^ω)(n) > {n, n [1 [2 /1 [1 [2] 2] 2 2] 2] 2}, 

 fθ(Ωε0) + 1(n) > {n, n [1 [2 /1 [1 / 2] 2 2] 2] 2}, 

 fθ(ΩΓ0)(n) > {n, n [1 [2 /1 [1 [1 / 2 /2 2] 2] 2 2] 2] 2}, 
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 fθ(Ωθ(εΩ+1)) + 1(n) > {n, n [1 [2 /1 [1 [1 /2 3] 2] 2 2] 2] 2}, 

 fθ(Ωθ(Ω2))(n) > {n, n [1 [2 /1 [1 [1 [1 /2 2 /3 2] 2] 2] 2 2] 2] 2}, 

 fθ(Ωθ(Ω3))(n) > {n, n [1 [2 /1 [1 [1 [1 [1 /3 2 /4 2] 2] 2] 2] 2 2] 2] 2}. 

 

Taking  S1 = ‘1 [1 [2 /1,2 2] 2] 2’  and  Sn+1 = ‘1 [1 [2 /Sn 2] 2] 2’, 

 fθ(Ωθ(Ωω))(n) > {n, n [1 [2 /S1 2] 2] 2}, 

 fθ(Ωθ(Ωθ(Ωω)))(n) > {n, n [1 [2 /S2 2] 2] 2}, 

 fθ(Ωθ(Ωθ(Ωθ(Ωω)))
)(n) > {n, n [1 [2 /S3 2] 2] 2}, 

which means that the limit ordinal of the Sn sequence – and Bird’s Nested Hierarchical Hyper-Nested 

Array Notation – is θ(ΩΩ). 

 

The S(n) function at the end of Beyond Bird’s Nested Arrays V grows as rapidly as fθ(ΩΩ)(n). 
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