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Beyond Bird’s Nested Arrays I 
 

My various Array Notations use curly brackets { } for the entire array, square brackets [ ] for 

‘separator’ arrays (markers denoting the end of the linear, planar or higher dimensional space within 

the array) and angle brackets ‹ › to denote that a space of a certain dimension is filled up with entries 

of a certain integer. In order to proceed beyond my Nested Array Notation, I have managed to link the 

separator arrays with the various ordinal infinities or transfinite numbers, in order to make it easier for 

mathematicians to follow (quite a large list of them). 

 

The first epsilon ordinal, 

 ε0 = ω^^ω 

     = ω^ω^ω^...^ω  (with ω omegas). 

 

The next epsilon numbers are ε1, ε2, ε3 etc. Using εα to denote the (α+1)th epsilon number (as α is a 

Greek letter variable, it may be either finite or transfinite), εα+1 is the limit of the sequence, 

 εα+1, 

 ω^(εα+1), 

 ω^ω^(εα+1), 

etc., so, 

 εα+1 = ω^ω^ω^...^ω^(εα+1) (with ω omegas). 

The sequence begins with εα+1 rather than εα since ω^εα = εα. Putting it another way, 

 εα+1 = εα^^ω. 

 

Since, 

 ω^^(ω+1) = ω^(ω^^ω) = ω^ε0 = ε0, 

I have redefined Knuth’s Up-arrow Notation with transfinite values so that 

 ω^^(ω+1) = ω^(ε0+1), 

and similarly, ω^^β = εα implies that ω^^(β+1) = ω^(εα+1), in order to achieve a strictly increasing 

function for f(β) = ω^^^
...

^β (with γ up-arrows, for some finite or transfinite γ). Using this redefinition, 

 ε1 = ω^^(ω2), 

 ε2 = ω^^(ω3), 

and, in general, 

 εα = ω^^(ω(1+α))  (1+α = α for all α ≥ ω). 

 

I find that, 

 ε(ε0) = ω^^ω^^ω, 

 ε(ε(ε0)) = ω^^ω^^ω^^ω, 

etc., so, the first ordinal beyond the epsilon numbers, zeta-0 is 

 ζ0 = ε(ε(ε(...(ε0)...)))  (with ω epsilons) 

     = ω^^^ω. 

 

ζα+1 is the limit of the sequence, 

 ζα+1, 

 ε(ζα+1), 

 ε(ε(ζα+1)), 

etc., so, 

 ζα+1 = ε(ε(ε(...(ε(ζα+1))...))) (with ω epsilons) 

        = ω^^ω^^...^^ω^^(ζα+1) (with ω omegas), 

when ω^^^β = ζα implies that ω^^^(β+1) = ε(ζα+1) rather than ω^^^(β+1) = ε(ζα) = ζα. 
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Hence, 

 ζ1 = ω^^^(ω2), 

 ζ2 = ω^^^(ω3), 

and, in general, 

 ζα = ω^^^(ω(1+α)). 

 

 ζ(ζ0) = ω^^^ω^^^ω, 

 ζ(ζ(ζ0)) = ω^^^ω^^^ω^^^ω, 

etc., so, the first ordinal beyond the zeta numbers, eta-0 is 

 η0 = ζ(ζ(ζ(...(ζ0)...)))  (with ω zetas) 

     = ω^^^^ω. 

 

There are more expressive ordinal notations, for example, 

 φ(0) = 1, 

 φ(1) = ω, 

 φ(α) = ω^α, 

 φ(1, α) = εα, 

 φ(2, α) = ζα, 

 φ(3, α) = ηα, 

where φ (lower case Greek letter phi) is known as the Veblen function. It is defined as follows: 

 φ(α+1, 0) = φ(α, φ(α, φ( ... φ(α, 0) ... )))   (with ω φ’s), 

 φ(α+1, β+1) = φ(α, φ(α, φ( ... φ(α+1, β)+1 ... )))  (with ω φ’s). 

 

φ(1, α) represents the epsilon numbers, φ(2, α) the zeta numbers, and so on. φ(α, β) (also written as 

φα(β)) represents the (α-1)th set of numbers (after the epsilons). 

 

In Knuth’s Up-arrow Notation and my Linear Array Notation, for α ≥ 1, 

 φ(α, 0) = ω^^^
...
^ω  (with 1+α up-arrows) 

             = {ω, ω, 1+α}, 

 φ(α, β) = ω^^^
...
^(ω(1+β)) (with 1+α up-arrows) 

             = {ω, ω(1+β), 1+α}. 

 

The limit of the sequence, 

 0, 

 φ(0) = 1, 

 φ(φ(0), 0) = φ(1, 0) = ε0 = {ω, ω, 2}, 

 φ(φ(φ(0), 0), 0) = φ(ε0, 0) = {ω, ω, ε0} > {ω, ω, ω} = {ω, 2, 1, 2}, 

 φ(φ(φ(φ(0), 0), 0), 0) > {ω, ω, {ω, ω, ω}} = {ω, 3, 1, 2}, 

 φ(φ(φ(φ(φ(0), 0), 0), 0), 0) > {ω, 4, 1, 2}, 

etc., is 

 φ(1, 0, 0) = φ(φ(φ( ... φ(0) ... ), 0), 0)  (with ω φ’s) 

                 = {ω, ω, 1, 2}. 

                 = ω {ω {ω { ... {ω {ω} ω} ... } ω} ω} ω (with ω layers of curly brackets). 

 

φ(1, 0, 0) is the Feferman-Schütte ordinal and normally written as Γ0 (Γ is the capital Greek letter 

Gamma). We really needed a special notation well before even thinking of this ordinal, for we would 

truly run out of letters if we used epsilon, zeta, eta etc. While ε0 represents the first step of reaching 

this ordinal, the second step would require ε0 letters, the third step would require as many letters as 

the ordinal represented by the second step, and so on. And ω of these steps are needed to get to Γ0. 
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We can generalise for any number of arguments of φ. 

 φ(R,α+1,0) = φ(R,α, φ(R,α, φ( .... φ(R,α,0) .... ))), 

 φ(R,α+1,β+1) = φ(R,α, φ(R,α, φ( .... φ(R,α+1,β)+1 .... ))), 

 φ(R,α+1,0,0,..,0) = φ(R,α, φ(R,α, φ( .... φ(R,α,0,0,..,0) .... ), 0,..,0), 0,..,0), 

 φ(R,α+1,0,..,0,β+1) = φ(R,α, φ(R,α, φ( .... φ(R,α+1,0,..,0,β)+1 .... ), 0,..,0), 0,..,0), 

where R represents a string of the remaining arguments of φ and 0,..,0 is a string of one or more 

zeroes. There are ω φ’s on the right hand side of each of the four equations. 

This was adapted from page 29 of “Why Ordinals are Good for You” 

(http://cl-informatik.uibk.ac.at/~georg/publications/esslli03.pdf). 

 

When λ is a limit ordinal (of the form ωα for α > 0) and α < λ, 

 φ(R, α, φ(R, λ, β)+1)  has limit ordinal  φ(R, λ, β+1)  as α tends to λ, 

 φ(R,α,0,..,0,φ(R,λ,0,..,0,β)+1)  has limit ordinal  φ(R,λ,0,..,0,β+1)  as α tends to λ, 

where R represents a string of the remaining arguments of φ and 0,..,0 is a string of one or more 

zeroes. 

 

I found that, 

 φ(α, 0, 0, ... , 0) = {ω, ω, 1, ... , 1, 1+α} 

                           = {ω, ω, ω, ... , {ω, ω-1, 1, ... , 1, 1+α}, α} 

                           > {ω, ω, ω, ... , ω, α}, 

with the dots representing the same number of arguments, and, for ordinals above φ(1, 0) = ε0, 

 φ(αn, ... , α3, α2, α1) = {ω, ω(1+α1), 1+α2, 1+α3, ... , 1+αn}. 

 

The limit of the sequence, 

 φ(1) = ω, 

 φ(1, 0) = ε0, 

 φ(1, 0, 0) = Γ0, 

 φ(1, 0, 0, 0), 

 φ(1, 0, 0, 0, 0), 

etc., is 

 θ(Ω^ω) = φ(1, 0, 0, ... , 0) (with ω zeroes), 

which is the small Veblen ordinal. The θ (theta) function is an ordinal collapsing function and Ω 

(capital Greek letter Omega) denotes the first uncountable ordinal. 

 

 θ(Ω^ω) = {ω, ω [2] 2} = {ω, ω, ω, ... , ω}  (with ω omegas). 

 

Relationship between the θ and φ functions: 

 θ(0) = φ(0) = 1, 

 θ(1) = φ(1, 0) = ε0, 

 θ(2) = φ(2, 0) = ζ0, 

 θ(α) = φ(α, 0)   (α < Ω), 

 θ(ω) = φ(ω, 0), 

 θ(Ω) = θ(θ(...θ(0)...))  (with ω θ’s) 

         = φ(1, 0, 0) = Γ0, 

 θ(Ωα) = φ(α, 0, 0)  (α < Ω), 

 θ(Ω^2) = φ(1, 0, 0, 0)  (Ackermann ordinal), 

 θ(Ω^n) = φ(1, 0, 0, ... , 0) (with n+1 zeroes), 

 θ(Ω^ω) = φ(1, 0, 0, ... , 0) (with ω zeroes). 
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The notation for the ordinal collapsing function may vary. Texts often use ψ (psi) ordinals as follows: 

 ψ(0) = φ(1, 0) = ε0, 

 ψ(1) = φ(1, 1) = ε1, 

 ψ(α) = φ(1, α) = εα  (α < Ω), 

 ψ(Ω) = φ(2, 0) = ζ0, 

 ψ(Ω2) = φ(2, 1) = ζ1, 

 ψ(Ωα) = φ(2, α-1) = ζα-1  (1 ≤ α < ω) 

            = φ(2, α) = ζα  (ω ≤ α < Ω), 

 ψ(Ω^2) = φ(3, 0), 

 ψ(Ω^α) = φ(1+α, 0)  (1 ≤ α < Ω), 

 ψ((Ω^α)β) = φ(1+α, β-1)  (1 ≤ α < Ω, 1 ≤ β < ω) 

                  = φ(1+α, β)  (1 ≤ α < Ω, ω ≤ β < Ω), 

 ψ(Ω^Ω) = φ(1, 0, 0) = Γ0, 

 ψ(Ω^(Ωα)) = φ(α, 0, 0)  (1 ≤ α < Ω), 

 ψ(Ω^Ω^2) = φ(1, 0, 0, 0), 

 ψ(Ω^Ω^n) = φ(1, 0, 0, ... , 0) (with n+1 zeroes, n ≥ 1), 

 ψ(Ω^Ω^ω) = φ(1, 0, 0, ... , 0) (with ω zeroes). 

 

While θ(Ω^ω) = ψ(Ω^Ω^ω) is known as the small Veblen ordinal, θ(Ω^Ω) = ψ(Ω^Ω^Ω) is known as the 

large Veblen ordinal, which is 

 θ(Ω^θ(Ω^...θ(Ω)...))  (with ω θ’s). 

 

Larger ordinals exist, for example, 

 θ(Ω^Ω^ω), 

 θ(Ω^Ω^Ω) 

and even 

 θ(εΩ+1) = θ(Ω^Ω^Ω^...)  (with ω Ω’s), 

which is known as the Bachmann-Howard ordinal. 

 

My Nested Array Notation can be extended beyond the ε0 recursion level by introducing 

‘superseparators’, starting with [[1]], which separates ε0-spaces and has level ε0. I can define 

 {a, b [[1]] 2} = {a ‹‹0›› b} 

                    = {a ‹b ‹b ‹ ... ‹b ‹b› b› ... › b› b› b} (with b b’s from centre to right), 

which is equivalent to 

 {a, b [1 [1 [ ... [1 [1, 2] 2] ... ] 2] 2] 2}  (with b-1 square brackets, for b ≥ 2). 

This function is ε0-recursive, since ε0 is the limit of the sequence ω^ω, ω^ω^ω^ω, ω^ω^ω^ω^ω^ω 

etc., or ω^^2, ω^^4, ω^^6 etc. We need ε0^^ω to achieve ε1. 

 

After [[1]] comes [[2]], [[3]], ... , [[1, 2]], ... , [[1 [2] 2]], ... [[1 [1, 2] 2]], and so on. [[n+1]] separates 

(ε0+n)-spaces, [[m+1, n+1]] separates (ε0+ωn+m)-spaces etc. If [X] is a separator with level α (a 

combination of a finite number and the various ordinal infinities, as X is a string of characters) then 

[[X]] is a separator with level ε0+α, meaning that it can handle up to ω^(ε0+α) = ε0(ω^α) arguments. 

When X ‘fills-up’ an ε0-space, I need to nest the [[1]] separator inside double square brackets. The ε02 

level [[1 [[1]] 2]] separator is defined as follows: 

 {a, b [[1 [[1]] 2]] 2} = {a ‹‹0 [[1]] 2›› b} 

                              = {a ‹‹b ‹‹0›› b›› b} 

                              = {a ‹‹b ‹b ‹ ... ‹b ‹b› b› ... › b› b›› b} 

    (with b b’s from centre to right within the double angle brackets). 
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In general, 

 {a, b [[1 [[1]] n #]] 2} = {a ‹‹0 [[1]] n #›› b} 

                                 = {a ‹‹ b ‹‹0›› b [[1]] n-1 # ›› b} 

                                 = {a ‹‹ b ‹b ‹ ... ‹b ‹b› b› ... › b› b [[1]] n-1 # ›› b} 

    (with b b’s from centre to right within the double angle brackets), 

where # is a ‘wildcard’ character representing the remainder of the array (which can be an empty 

string). 

 

 [[1 [[1]] 2]]  has level  ε02, 

 [[X [[1]] 2]]  has level  ε02+α, 

 [[1 [[1]] 3]]  has level  ε03, 

 [[1 [[1]] 1, 2]]  has level  ε0ω, 

 [[1 [[1]] 1 [2] 2]]  has level ε0(ω^ω), 

 [[1 [[1]] X]]  has level  ε0α. 

 

At this point, I use the square outline symbol (□) in place of the [[1]] separator, in order to make some 

of the expressions easier to read. With k 1’s and □ symbols inside the double square brackets, 

 {a, b [[1 □ 1 □ ... □ 1 □ n #]] 2} = {a ‹‹ 0 □ 1 □ ... □ 1 □ n # ›› b} 

                                                 = {a ‹‹ S □ S □ ... □ S □ n-1 # ›› b}  (with k S strings), 

where S = ‘b ‹‹0›› b’ 

    = ‘b ‹b ‹ ... ‹b ‹b› b› ... › b› b’  (with b b’s from centre out) 

and # is rest of array. 

 

 [[1 □ 1 □ 2]]  has level  ε0^2, 

 [[1 □ 1 □ 3]]  has level  (ε0^2)2, 

 [[1 □ 1 □ X]]  has level  (ε0^2)α, 

 [[1 □ 1 □ 1 □ 2]]  has level  ε0^3, 

 [[1 □ 1 □ ... □ 1 □ 2]]  (with n 1’s)  has level  ε0^n. 

 

The □ symbol (or [[1]]) separates ε0-spaces within double square brackets just as the comma 

separates 0-spaces (single entries). In order to extend further, I nest higher-order double square 

bracket separators within double square bracket separators, starting with [[1 [[2]] 2]]. 

 

 {a, b [[1 [[2]] 2]] 2} = {a ‹‹0 [[2]] 2›› b} 

                              = {a ‹‹b ‹‹1›› b›› b} 

                              = {a ‹‹ S □ S □ S □ ... □ S ›› b}  (with b S strings), 

where S = ‘b ‹‹0›› b’ 

    = ‘b ‹b ‹ ... ‹b ‹b› b› ... › b› b’  (with b b’s from centre out). 

 

 {a, b [[1 [[3]] 2]] 2} = {a ‹‹0 [[3]] 2›› b} 

                              = {a ‹‹b ‹‹2›› b›› b} 

                              = {a ‹‹ S□S□...□S [[2]] S□S□...□S [[2]] ...... [[2]] S□S□...□S ›› b} 

      (with b^2 array of S’s within double angle brackets). 

 

 [[1 [[2]] 2]]  has level  ε0^ω, 

 [[1 [[3]] 2]]  has level  ε0^ω^2, 

 [[1 [[1, 2]] 2]]  has level  ε0^ω^ω, 

 [[1 [[1, 1, 2]] 2]]  has level  ε0^ω^ω^2, 

 [[1 [[1 [2] 2]] 2]]  has level  ε0^ω^ω^ω, 
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 [[1 [[1 [3] 2]] 2]]  has level  ε0^ω^ω^ω^2, 

 [[1 [[1 [1, 2] 2]] 2]]  has level  ε0^ω^ω^ω^ω, 

 [[1 [[X]] 2]]  has level  ε0^ω^α. 

 

 [[1 [[1 □ 2]] 2]]  has level  ε0^ε0, 

 [[X [[1 □ 2]] 2]]  has level  ε0^ε0+α, 

 [[1 [[1 □ 2]] 3]]  has level  (ε0^ε0)2, 

 [[1 [[1 □ 2]] 1, 2]]  has level  (ε0^ε0)ω, 

 [[1 [[1 □ 2]] X]]  has level  (ε0^ε0)α, 

 [[1 [[1 □ 2]] 1 [[1 □ 2]] 2]]  has level  (ε0^ε0)^2, 

 [[1 [[2 □ 2]] 2]]  has level  (ε0^ε0)^ω, 

 [[1 [[1, 2 □ 2]] 2]]  has level  (ε0^ε0)^ω^ω, 

 [[1 [[X □ 2]] 2]]  has level  (ε0^ε0)^ω^α, 

 [[1 [[1 □ 3]] 2]]  has level  (ε0^ε0)^ε0 = ε0^ε0^2, 

 [[1 [[1 □ 4]] 2]]  has level  ε0^ε0^3, 

 [[1 [[1 □ 1, 2]] 2]]  has level  ε0^ε0^ω, 

 [[1 [[1 □ 1 [2] 2]] 2]]  has level  ε0^ε0^ω^ω, 

 [[1 [[1 □ X]] 2]]  has level  ε0^ε0^α. 

 

 [[1 [[1 □ 1 □ 2]] 2]]  has level  ε0^ε0^ε0, 

 [[1 [[1 □ 2 □ 2]] 2]]  has level  (ε0^ε0^ε0)^ε0 = ε0^ε0^(ε0+1), 

 [[1 [[1 □ X □ 2]] 2]]  has level  ε0^ε0^(ε0+α), 

 [[1 [[1 □ 1 □ 3]] 2]]  has level  ε0^ε0^(ε02), 

 [[1 [[1 □ 1 □ X]] 2]]  has level  ε0^ε0^(ε0α), 

 [[1 [[1 □ 1 □ 1 □ 2]] 2]]  has level  ε0^ε0^ε0^2, 

 [[1 [[1 □ 1 □ X □ 2]] 2]]  has level  ε0^ε0^(ε0^2+ε0α), 

 [[1 [[1 □ 1 □ 1 □ 3]] 2]]  has level  ε0^ε0^((ε0^2)2), 

 [[1 [[1 □ 1 □ 1 □ X]] 2]]  has level  ε0^ε0^((ε0^2)α), 

 [[1 [[1 □ 1 □ 1 □ 1 □ 2]] 2]]  has level  ε0^ε0^ε0^3, 

 [[1 [[1 [[2]] 2]] 2]]  has level  ε0^ε0^ε0^ω, 

 [[1 [[1 [[1, 2]] 2]] 2]]  has level  ε0^ε0^ε0^ω^ω, 

 [[1 [[1 [[X]] 2]] 2]]  has level  ε0^ε0^ε0^ω^α. 

 

 [[1 [[1 [[1 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0, 

 [[X [[1 [[1 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0+α, 

 [[1 [[1 [[1 □ 2]] 2]] 3]]  has level  (ε0^ε0^ε0^ε0)2, 

 [[1 [[1 [[1 □ 2]] 2]] X]]  has level  (ε0^ε0^ε0^ε0)α, 

 [[1 [[1 [[1 □ 2]] 2]] 1 [[1 [[1 □ 2]] 2]] 2]]  has level  (ε0^ε0^ε0^ε0)^2, 

 [[1 [[2 [[1 □ 2]] 2]] 2]]  has level  (ε0^ε0^ε0^ε0)^ω, 

 [[1 [[X [[1 □ 2]] 2]] 2]]  has level  (ε0^ε0^ε0^ε0)^ω^α, 

 [[1 [[1 □ 2 [[1 □ 2]] 2]] 2]]  has level  (ε0^ε0^ε0^ε0)^ε0 = ε0^ε0^(ε0^ε0+1), 

 [[1 [[1 □ 1 □ 2 [[1 □ 2]] 2]] 2]]  has level  ε0^ε0^(ε0^ε0+ε0), 

 [[1 [[1 [[2]] 2 [[1 □ 2]] 2]] 2]]  has level  ε0^ε0^(ε0^ε0+ε0^ω), 

 [[1 [[1 [[1 □ 2]] 3]] 2]]  has level  ε0^ε0^((ε0^ε0)2), 

 [[1 [[1 [[1 □ 2]] X]] 2]]  has level  ε0^ε0^((ε0^ε0)α), 

 [[1 [[1 [[1 □ 2]] 1 □ 2]] 2]]  has level  ε0^ε0^((ε0^ε0)ε0) = ε0^ε0^ε0^(ε0+1), 

 [[1 [[1 [[1 □ 2]] 1 [[2]] 2]] 2]]  has level  ε0^ε0^ε0^(ε0+ω), 

 [[1 [[1 [[1 □ 2]] 1 [[1 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^(ε02), 

 [[1 [[1 [[2 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^(ε0ω), 
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 [[1 [[1 [[X □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^(ε0(ω^α)), 

 [[1 [[1 [[1 □ 3]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^2, 

 [[1 [[1 [[1 □ 1, 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ω, 

 [[1 [[1 [[1 □ X]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^α. 

 

 [[1 [[1 [[1 □ 1 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ε0, 

 [[1 [[1 [[1 □ 1 □ X]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^(ε0α), 

 [[1 [[1 [[1 □ 1 □ 1 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ε0^2, 

 [[1 [[1 [[1 [[2]] 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ε0^ω, 

 [[1 [[1 [[1 [[X]] 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ε0^ω^α, 

 [[1 [[1 [[1 [[1 □ 2]] 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ε0^ε0. 

 

Take the separator 

 [[Sn]] = [[1 [[1 [[ ... [[1 [[1 □ 2]] 2]] ... ]] 2]] 2]], 

where there are n double squared brackets (ignoring the [[1]] in the centre, still symbolised by □), thus 

 [[S1]] = [[1 □ 2]]  has level  ε02, 

 [[S2]] = [[1 [[1 □ 2]] 2]]  has level  ε0^ε0, 

 [[S3]] = [[1 [[1 [[1 □ 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0, 

 [[S4]] = [[1 [[1 [[1 [[1 □ 2]] 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^ε0^ε0. 

 

I conjecture that [[Sn]] has level ε0^^(2n-2) for all positive integers of n ≥ 2. It holds true for n = 2, 3, 4. 

 

Assuming it holds true for n = k, 

 [[Sk]] = [[1 [[Sk-1]] 2]]  has level  ε0^^(2k-2), 

 [[X [[Sk-1]] 2]]  has level  ε0^^(2k-2) + α, 

 [[1 [[Sk-1]] 3]]  has level  (ε0^^(2k-2))2, 

 [[1 [[Sk-1]] X]]  has level  (ε0^^(2k-2))α, 

 [[1 [[Sk-1]] 1 [[Sk-1]] 2]]  has level  (ε0^^(2k-2))^2, 

 [[1 [[2 [[Sk-2]] 2]] 2]]  has level  (ε0^^(2k-2))^ω, 

 [[1 [[X [[Sk-2]] 2]] 2]]  has level  (ε0^^(2k-2))^ω^α, 

 [[1 [[1 □ 2 [[Sk-2]] 2]] 2]]  has level  (ε0^^(2k-2))^ε0 = ε0^ε0^(ε0^^(2k-4) + 1), 

 [[1 [[1 [[Sm]] 2 [[Sk-2]] 2]] 2]]  has level  ε0^ε0^(ε0^^(2k-4) + ε0^^(2m)) (1 ≤ m ≤ k-3), 

 [[1 [[1 [[Sk-2]] 3]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))2), 

 [[1 [[1 [[Sk-2]] X]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))α), 

 [[1 [[1 [[Sk-2]] 1 [[Sm]] 2]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))(ε0^^(2m))) (1 ≤ m ≤ k-3), 

 [[1 [[1 [[Sk-2]] 1 [[Sk-2]] 2]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))^2), 

 [[1 [[1 [[2 [[Sk-3]] 2]] 2]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))^ω), 

 [[1 [[1 [[X [[Sk-3]] 2]] 2]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))^ω^α), 

 [[1 [[1 [[1 □ 2 [[Sk-3]] 2]] 2]] 2]]  has level  ε0^ε0^((ε0^^(2k-4))^ε0) = ε0^ε0^ε0^ε0^(ε0^^(2k-6) + 1), 

 [[1 [[1 [[1 [[Sm]] 2 [[Sk-3]] 2]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^(ε0^^(2k-6) + ε0^^(2m)) 

          (1 ≤ m ≤ k-4), 

 [[1 [[1 [[1 [[Sk-3]] 3]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^((ε0^^(2k-6))2), 

 [[1 [[1 [[1 [[Sk-3]] X]] 2]] 2]]  has level  ε0^ε0^ε0^ε0^((ε0^^(2k-6))α), 

 ...... 

 [[1 [[1 [[ ... [[1 [[S1]] X]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^((ε0^^2)α) 

    (with k double squared brackets and 2k-4 ε0’s in ‘ε0^ε0^...^ε0’), 

 [[1 [[1 [[ ... [[1 [[S1]] 1 [[S1]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^((ε0^ε0)^2) 

        = ε0^ε0^...^ε0^ε0^(ε02) (with 2k-2 ε0’s), 

 [[1 [[1 [[ ... [[1 [[2 □ 2]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^(ε0ω), 
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 [[1 [[1 [[ ... [[1 [[X □ 2]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^(ε0(ω^α)), 

 [[1 [[1 [[ ... [[1 [[1 □ 3]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^2, 

 [[1 [[1 [[ ... [[1 [[1 □ X]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^α, 

 [[1 [[1 [[ ... [[1 [[1 □ 1 □ 2]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^ε0 = ε0^^(2k-1), 

 [[1 [[1 [[ ... [[1 [[1 □ 1 □ X]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^(ε0α), 

 [[1 [[1 [[ ... [[1 [[1 □ 1 □ 1 □ 2]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^ε0^2, 

 [[1 [[1 [[ ... [[1 [[1 [[2]] 2]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^ε0^ω, 

 [[1 [[1 [[ ... [[1 [[1 [[X]] 2]] 2]] ... ]] 2]] 2]]  has level  ε0^ε0^...^ε0^ε0^ε0^ε0^ω^α, 

 [[1 [[1 [[ ... [[1 [[1 [[1 □ 2]] 2]] 2]] ... ]] 2]] 2]] = [[Sk+1]]  has level  ε0^^(2k), 

and so, it also holds true for n = k+1. 

 

So, [[Sn]] has level ε0^^(2n-2) for all positive integers of n ≥ 2 (outline of proof by induction shown 

above). Each time I add a layer of double square brackets to the separator the ε0 power tower grows 

in height by two. When I introduce the next ‘superlevel’ of separators (starting with [[[1]]]) and define 

 {a, b [[[1]]] 2} = {a ‹‹‹0››› b} 

                      = {a ‹‹b ‹‹b ‹‹ ... ‹‹b ‹‹b›› b›› ... ›› b›› b›› b} (with b b’s from centre to right), 

which is equivalent to 

 {a, b [[1 [[1 [[ ... [[1 [[1, 2]] 2]] ... ]] 2]] 2]] 2} (with b-1 double square brackets, for b ≥ 2), 

I would obtain an ε1-recursive function. [[[1]]] separates ε1-spaces and has level ε1. 

 

In fact, when I replace all of the double square brackets by treble square brackets in the above 

separators (with the □ symbol used in place of [[[1]]]), the ε0’s in the separator levels get replaced by 

ε1’s and I would obtain an ε2-recursive function, using the [[[[1]]]] separator. (The proof that [[[Sn]]] has 

level ε1^^(2n-2) for all n ≥ 2 would hold.) I can even continue this so that each additional square 

bracket around the separators adds one to the epsilon numbers, for example, 

 [[[...[1]...]]]  (with n+2 square brackets around 1)  would have level εn. 

 

I now define the separator [X \ n] to be  [[[...[X]...]]]  (with n square brackets around the array X). 

Similarly,  ‘a ‹X \ n› b’  is  ‘a ‹‹‹...‹X›...››› b’  (with n angle brackets around the array X). By this 

definition 

 [1 \ n+2]  has level  εn. 

 

The Main (M) Rules and Angle Bracket (A) Rules remain as before but a separator or angle bracket 

array can now end with a backslash (\) and a number (the ‘superlevel’ of the separator), when the 

number is 2 or greater. When this number is 1, the ‘\ 1’ strings are omitted. 

 

The only significant new rule to add would be: 

 {a, b [1 \ n] 2} = {a ‹0 \ n› b} 

                       = {a ‹b ‹b ‹ ... ‹b ‹b \ n-1› b \ n-1› ... › b \ n-1› b \ n-1› b} 

        (with b b’s from centre to right). 

This is equivalent to 

 {a, b [1 [1 [ ... [1 [1, 2 \ n-1] 2 \ n-1] ... ] 2 \ n-1] 2 \ n-1] 2} (with b-1 square brackets, for b ≥ 2) 

and is an εn-2-recursive function, since [1 \ n] separates εn-2-spaces and has level εn-2. 

 

The backslash is a ‘hyperseparator’, as it ‘outranks’ all the normal separators – even when they 

themselves contain the \ symbol. Furthermore, the backslash cannot appear in the ‘base layer’ of a 

main array (within curly brackets, as in {a, b \ c}). A number 1 between two separators is removed 

(along with separator to its left) when the left separator is of a lower level that the separator to its right 

(see Rules M2 and A2 of Nested Array Notation). The levels of the separators are determined by their 
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associated ordinals, for example, [1 \ 3] ranks higher than  [1 [2 \ 2] 2 \ 2]  since they have ordinal 

levels of ε1 and ε0^ω respectively, and ε1 > ε0^ω. When the separator to the right of a number 1 is a 

‘hyperseparator’ (represented by a backslash) and the 1 is not the first entry of its separator or angle 

bracket array (above the ‘base layer’ of the main array), the 1 is always removed along with the 

normal separator to its left. The following line is therefore added to Rule A2: 

 ‘a ‹# [A] 1 \ n› b’ = ‘a ‹# \ n› b’. 

In that line, [A] is a normal separator and # denotes the remainder of the angle bracket array. 

 

The next stage of my extended Nested Array Notation would be to turn the number to the right of the 

backslash into an array. 

 {a, b [1 \ 1, 2] 2} = {a ‹0 \ 1, 2› b} 

                           = {a ‹b \ b› b}, 

which is greater than 

 {a ‹0 \ b› b} = {a ‹b ‹b ‹ ... ‹b ‹b \ b-1› b \ b-1› ... › b \ b-1› b \ b-1› b} 

        (with b-1 angle brackets). 

This is an εω-recursive function, since [1 \ 1, 2] separates εω-spaces and has level εω. 

 

Angle Bracket Rule A4 with k = 2, n = 2 and # blank is 

 ‘a ‹0 [A1] 1 [A2] 2› b’ = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b › b’. 

When [A1] is a backslash and [A2] is a comma, the strings A1’ and A2’ are both set to ‘0’, since they 

are at the very first level of hyperseparator and separator respectively. Thus 

 ‘a ‹0 \ 1, 2› b’ = ‘a ‹ b ‹0› b \ b ‹0› b › b’ 

                       = ‘a ‹b \ b› b’. 

 

For example, 

 {3, 2 [1 \ 1, 2] 2} = {3 ‹0 \ 1, 2› 2} 

                           = {3 ‹2 \ 2› 2} 

                           = {3 ‹0\2› 2 [1\2] 3 ‹0\2› 2 [2\2] 3 ‹0\2› 2 [1\2] 3 ‹0\2› 2} 

                           = {3,3 [2] 3,3 [1\2] 3,3 [2] 3,3 [2\2] 3,3 [2] 3,3 [1\2] 3,3 [2] 3,3}, 

 {3, 2, 2 [1 \ 1, 2] 2} = {3, 3 [1 \ 1, 2] 2} 

                               = {3 ‹0 \ 1, 2› 3} 

                               = {3 ‹3 \ 3› 3} 

                               = N, 

 {3, 3, 2 [1 \ 1, 2] 2} = {3, N [1 \ 1, 2] 2} 

                               = {3 ‹0 \ 1, 2› N} 

                               = {3 ‹N \ N› N}. 

 

In Rule A2, we now have 

 ‘a ‹# [A] 1 \ #*› b’ = ‘a ‹# \ #*› b’ 

instead of 

 ‘a ‹# [A] 1 \ n› b’ = ‘a ‹# \ n› b’. 

#* denotes the remainder of the angle bracket array to the right of the backslash. 

 

When I replace all of the double square brackets in the list of separators with double square brackets 

in such a way so that each [[S]] is replaced by [S \ 1, 2] (with the □ symbol used in place of [1 \ 1, 2]), 

the ε0’s in the separator levels get replaced by εω’s and I would obtain an εω+1-recursive function, 

using the [1 \ 2, 2] separator, which has level εω+1. I can repeat this process when introducing higher 

level separators, so that if [1 \ n #] has level εα (where # is rest of array) then [1 \ n+1 #] would have 

level εα+1. 
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The following separators have ordinal levels as follows:- 

 

 [1 \ 1, 2]  has level  εω, 

 [1 \ 2, 2]  has level  εω+1, 

 [1 \ 3, 2]  has level  εω+2, 

 [1 \ 1, 3]  has level  εω2, 

 [1 \ 2, 3]  has level  εω2+1, 

 [1 \ 1, 4]  has level  εω3, 

 [1 \ 1, 1, 2]  has level  εω^2, 

 [1 \ 1, 1, 1, 2]  has level  εω^3, 

 [1 \ 1 [2] 2]  has level  εω^ω, 

 [1 \ 1 [3] 2]  has level  εω^ω^2, 

 [1 \ 1 [4] 2]  has level  εω^ω^3, 

 [1 \ 1 [1, 2] 2]  has level  εω^ω^ω, 

 [1 \ 1 [1 [2] 2] 2]  has level  εω^ω^ω^ω, 

 [1 \ 1 [1 [1, 2] 2] 2]  has level  εω^ω^ω^ω^ω. 

 

 [1 \ 1 [1 \ 2] 2]  has level  ε(ε0), 

 [1 \ 2 [1 \ 2] 2]  has level  ε(ε0+1), 

 [1 \ 1, 2 [1 \ 2] 2]  has level  ε(ε0+ω), 

 [1 \ 1 [2] 2 [1 \ 2] 2]  has level  ε(ε0+ω^ω), 

 [1 \ 1 [1 \ 2] 3]  has level  ε(ε02), 

 [1 \ 1 [1 \ 2] 1 [1 \ 2] 2]  has level  ε(ε0^2), 

 [1 \ 1 [2 \ 2] 2]  has level  ε(ε0^ω), 

 [1 \ 1 [1, 2 \ 2] 2]  has level  ε(ε0^ω^ω), 

 [1 \ 1 [1 [1 \ 2] 2 \ 2] 2]  has level  ε(ε0^ε0), 

 [1 \ 1 [1 \ 3] 2]  has level  ε(ε1), 

 [1 \ 1 [1 \ 4] 2]  has level  ε(ε2), 

 [1 \ 1 [1 \ 1, 2] 2]  has level  ε(εω), 

 [1 \ 1 [1 \ 2, 2] 2]  has level  ε(εω+1), 

 [1 \ 1 [1 \ 1, 3] 2]  has level  ε(εω2), 

 [1 \ 1 [1 \ 1, 1, 2] 2]  has level  ε(εω^2), 

 [1 \ 1 [1 \ 1 [2] 2] 2]  has level  ε(εω^ω), 

 [1 \ 1 [1 \ 1 [1, 2] 2] 2]  has level  ε(εω^ω^ω). 

 

 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2]  has level  ε(ε(ε0)), 

 [1 \ 1 [1 \ 1 [1 \ 3] 2] 2]  has level  ε(ε(ε1)), 

 [1 \ 1 [1 \ 1 [1 \ 1, 2] 2] 2]  has level  ε(ε(εω)), 

 [1 \ 1 [1 \ 1 [1 \ 1 [2] 2] 2] 2]  has level  ε(ε(εω^ω)), 

 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2]  has level  ε(ε(ε(ε0))), 

 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2] 2]  has level  ε(ε(ε(ε(ε0)))). 

 

When the array to the left of the backslash is a single 1, the array to the right of the backslash 

changes much like simple nested separator arrays (without the backslash). 

 

When n ≥ 2 and # is rest of array, 

 {a, b [1 \ n #] 2} = {a ‹0 \ n #› b} 

                          = {a ‹b ‹b ‹ ... ‹b ‹b \ n-1 #› b \ n-1 #› ... › b \ n-1 #› b \ n-1 #› b} 

       (with b b’s from centre to right). 
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With k 1’s to right of backslash, 

 {a, b [1 \ 1, 1, ... 1, n #] 2} = {a ‹0 \ 1, 1, ... 1, n #› b} 

                                          = {a ‹b \ b, b, ... , b, n-1 #› b} 

     (with k b’s between backslash and closed angle bracket). 

 

 {a, b [1 \ 1 [2] n #] 2} = {a ‹0 \ 1 [2] n #› b} 

                                  = {a ‹b \ b ‹1› b [2] n-1 #› b} 

                                  = {a ‹b \ b, b, ... , b [2] n-1 #› b} (with b b’s between \ and [2]). 

 

 {a, b [1 \ 1 [1, 2] n #] 2} = {a ‹0 \ 1 [1, 2] n #› b} 

                                      = {a ‹b \ b ‹0, 2› b [1, 2] n-1 #› b} 

                                      = {a ‹b \ b ‹b› b [1, 2] n-1 #› b} 

       (b^b array of b’s between \ and [1, 2]). 

 

When X is a string of characters, 

 {a, b [1 \ 1 [X] n #] 2} = {a ‹0 \ 1 [X] n #› b} 

                                   = {a ‹b \ b ‹X’› b [X] n-1 #› b}, 

where X’ is identical to X except that the first entry has been reduced by 1. If X begins with 1, X’ 

begins with 0. This bears similarities with Rule A4. 

 

 {a, b [1 \ 1 [1 \ 2] 2] 2} = {a ‹0 \ 1 [1 \ 2] 2› b} 

                                    = {a ‹b \ b ‹0 \ 2› b› b}, 

                                    = {a ‹b \ S› b}, 

where S = ‘b ‹b ‹b ‹ ... ‹b ‹b› b› ... › b› b› b’  (with b b’s from centre to right). 

 

 {a, b [1 \ 1 [1 \ n #] 2] 2} = {a ‹0 \ 1 [1 \ n #] 2› b} 

                                       = {a ‹b \ b ‹0 \ n #› b› b} 

                                       = {a ‹b \ S› b}, 

where S = ‘b ‹b ‹b ‹ ... ‹b ‹b \ n-1 #› b \ n-1 #› ... › b \ n-1 #› b \ n-1 #› b’ 

       (with b b’s from centre to right). 

 

 {a, b [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2} = {a ‹0 \ 1 [1 \ 1 [1 \ 2] 2] 2› b} 

                                                 = {a ‹b \ b ‹0 \ 1 [1 \ 2] 2› b› b} 

                                                 = {a ‹b \ b ‹b \ b ‹0 \ 2› b› b› b} 

                                                 = {a ‹b \ b ‹b \ S› b› b}, 

where S = ‘b ‹b ‹b ‹ ... ‹b ‹b› b› ... › b› b› b’  (with b b’s from centre to right). 

 

I next define the lowest separator with more than one backslash, 

 {a, b [1 \ 1 \ 2] 2} = {a ‹0 \ 1 \ 2› b} 

                            = {a ‹b \ b ‹b \ b ‹ ... ‹b \ b ‹b \ b› b› ... › b› b› b}      (with b-1 angle brackets). 

This is equivalent to 

 {a, b [1 \ 1 [1 \ 1 [ ... [1 \ 1 [1 \ 1, 2] 2] ... ] 2] 2] 2}  (with b-1 square brackets, for b ≥ 2) 

and is a ζ0-recursive function, since [1 \ 1 \ 2] separates ζ0-spaces and has level 

 ζ0 = ε(ε(ε(...(ε0)...)))  (with ω epsilons). 

ζ0 (ζ for zeta) is the first ordinal beyond the epsilons (φ(2, 0) in the Veblen hierarchy). 

 

The most significant single backslashed separators are:- 

 [1 \ 2]  has level  ε0, 

 [2 \ 2]  has level  ε0+1, 
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 [1 [1 \ 2] 2 \ 2]  has level  ε02, 

 [1 [2 \ 2] 2 \ 2]  has level  ε0^ω, 

 [1 [1 [1 \ 2] 2 \ 2] 2 \ 2]  has level  ε0^ε0, 

 [1 \ 3]  has level  ε1, 

 [1 \ 4]  has level  ε2, 

 [1 \ 1, 2]  has level  εω, 

 [1 \ 1 [1 \ 2] 2]  has level  ε(ε0), 

 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2]  has level  ε(ε(ε0)). 

 

Here are some separators with two backslashes:- 

 

 [1 \ 1 \ 2]  has level  ζ0, 

 [1 [1 \ 2] 2 \ 1 \ 2]  has level  ζ0+ε0, 

 [1 [1 \ 2] 1 [1 \ 2] 2 \ 1 \ 2]  has level  ζ0+ε0^2, 

 [1 [2 \ 2] 2 \ 1 \ 2]  has level  ζ0+ε0^ω, 

 [1 [1 [1 \ 2] 2 \ 2] 2 \ 1 \ 2]  has level  ζ0+ε0^ε0, 

 [1 [1 [1 \ 2] 1 [1 \ 2] 2 \ 2] 2 \ 1 \ 2]  has level  ζ0+ε0^ε0^ε0, 

 [1 [1 [1 [1 \ 2] 2 \ 2] 2 \ 2] 2 \ 1 \ 2]  has level  ζ0+ε0^ε0^ε0^ε0, 

 [1 [1 \ 3] 2 \ 1 \ 2]  has level  ζ0+ε1, 

 [1 [1 \ 1, 2] 2 \ 1 \ 2]  has level  ζ0+εω, 

 [1 [1 \ 1 [1 \ 2] 2] 2 \ 1 \ 2]  has level  ζ0+ε(ε0), 

 [1 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2 \ 1 \ 2]  has level  ζ0+ε(ε(ε0)). 

 

 [1 [1 \ 1 \ 2] 2 \ 1 \ 2]  has level  ζ02, 

 [1 [2 \ 1 \ 2] 2 \ 1 \ 2]  has level  ζ0^ω, 

 [1 [1 [1 \ 2] 2 \ 1 \ 2] 2 \ 1 \ 2]  has level  ζ0^ε0, 

 [1 [1 [1 \ 1 [1 \ 2] 2] 2 \ 1 \ 2] 2 \ 1 \ 2]  has level  ζ0^ε(ε0), 

 [1 [1 [1 \ 1 \ 2] 2 \ 1 \ 2] 2 \ 1 \ 2]  has level  ζ0^ζ0. 

 

Since ζ0 is a fixed point of α = εα, it follows that ζ0 = ε(ζ0), and so, ζ0^^ω = ε(ζ0)^^ω = ε(ζ0+1). We need 

ε(ε(...ε(ζ0+1)...)) (with ω ε’s) to make ζ1. The ordinal ζα+1 follows on from ζα in a similar manner. 

 

 [1 \ 2 \ 2]  has level  ε(ζ0+1) = ζ0^^ω, 

 [1 \ 3 \ 2]  has level  ε(ζ0+2) = ε(ζ0+1)^^ω, 

 [1 \ 1, 2 \ 2]  has level  ε(ζ0+ω), 

 [1 \ 1 [1 \ 2] 2 \ 2]  has level  ε(ζ0+ε0), 

 [1 \ 1 [1 \ 1 \ 2] 2 \ 2]  has level  ε(ζ02), 

 [1 \ 1 [1 \ 1 [1 \ 1 \ 2] 2 \ 2] 2 \ 2]  has level  ε(ε(ζ02)), 

 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 \ 2] 2 \ 2] 2 \ 2] 2 \ 2]  has level  ε(ε(ε(ζ02))). 

 

 [1 \ 1 \ 3]  has level  ζ1, 

 [1 \ 2 \ 3]  has level  ε(ζ1+1), 

 [1 \ 1, 2 \ 3]  has level  ε(ζ1+ω), 

 [1 \ 1 [1 \ 2] 2 \ 3]  has level  ε(ζ1+ε0), 

 [1 \ 1 [1 \ 1 \ 2] 2 \ 3]  has level  ε(ζ1+ζ0), 

 [1 \ 1 [1 \ 1 \ 3] 2 \ 3]  has level  ε(ζ12), 

 [1 \ 1 [1 \ 1 [1 \ 1 \ 3] 2 \ 3] 2 \ 3]  has level  ε(ε(ζ12)). 

 

 [1 \ 1 \ 4]  has level  ζ2, 
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 [1 \ 1 \ 5]  has level  ζ3, 

 [1 \ 1 \ 1, 2]  has level  ζω, 

 [1 \ 1 \ 1 [1 \ 2] 2]  has level  ζ(ε0), 

 [1 \ 1 \ 1 [1 \ 1 \ 2] 2]  has level  ζ(ζ0), 

 [1 \ 1 \ 1 [1 \ 1 \ 1 [1 \ 1 \ 2] 2] 2]  has level  ζ(ζ(ζ0)), 

 [1 \ 1 \ 1 [1 \ 1 \ 1 [1 \ 1 \ 1 [1 \ 1 \ 2] 2] 2] 2]  has level  ζ(ζ(ζ(ζ0))). 

The sequence of separators starting with the last three has limit ordinal φ(3, 0). Note that φ(1, α) = εα 

and φ(2, α) = ζα. 

 

 {a, b [1 \ 1 \ 1 \ 2] 2} = {a ‹0 \ 1 \ 1 \ 2› b} 

                                 = {a ‹b\b\ b ‹b\b\ b ‹ ... ‹b\b\ b ‹b\b\b› b› ... › b› b› b} 

         (with b-1 angle brackets) 

is a φ(3, 0)-recursive function, since 

 [1 \ 1 \ 1 \ 2]  has level  φ(3, 0). 

 

 [1 \ 2 \ 1 \ 2]  has level  εφ(3, 0)+1 = φ(3, 0)^^ω, 

 [1 \ 3 \ 1 \ 2]  has level  εφ(3, 0)+2, 

 [1 \ 1 [1 \ 1 \ 1 \ 2] 2 \ 1 \ 2]  has level  εφ(3, 0)2, 

 [1 \ 1 \ 2 \ 2]  has level  ζφ(3, 0)+1 = ε(ε(...(εφ(3, 0)2)...))  (with ω ε’s), 

 [1 \ 1 \ 3 \ 2]  has level  ζφ(3, 0)+2, 

 [1 \ 1 \ 1 [1 \ 1 \ 1 \ 2] 2 \ 2]  has level  ζφ(3, 0)2, 

 [1 \ 1 \ 1 \ 3]  has level  φ(3, 1) = ζ(ζ(...(ζφ(3, 0)2)...))  (with ω ζ’s), 

 [1 \ 1 \ 1 \ 4]  has level  φ(3, 2), 

 [1 \ 1 \ 1 \ 1 [1 \ 1 \ 1 \ 2] 2]  has level  φ(3, φ(3, 0)), 

 [1 \ 1 \ 1 \ 1 [1 \ 1 \ 1 \ 1 [1 \ 1 \ 1 \ 2] 2] 2]  has level  φ(3, φ(3, φ(3, 0))). 

 

 [1 \ 1 \ 1 \ 1 \ 2]  has level  φ(4, 0), 

 [1 \ 1 \ 1 \ 1 \ 3]  has level  φ(4, 1), 

 [1 \ 1 \ 1 \ 1 \ 1 [1 \ 1 \ 1 \ 1 \ 2] 2]  has level  φ(4, φ(4, 0)), 

 [1 \ 1 \ 1 \ 1 \ 1 [1 \ 1 \ 1 \ 1 \ 1 [1 \ 1 \ 1 \ 1 \ 2] 2] 2]  has level  φ(4, φ(4, φ(4, 0))), 

 [1 \ 1 \ 1 \ 1 \ 1 \ 2]  has level  φ(5, 0), 

 [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2]  has level  φ(6, 0), 

 [1 \ 1 \ 1 \ ... \ 1 \ 2]  (with n 1’s)  has level  φ(n, 0), 

 [1 \ 1 \ 1 \ ... \ 1 \ m]  (with n 1’s)  has level  φ(n, m-2). 

 

Suppose that X is a string of characters such that the separator [X] has level α (a combination of a 

finite number and the various ordinal infinities). For example, 

 if [X] is a single entry of a finite number, say, [a], then α = a-1; 

 if [X] = [a, b], then α = ω(b-1) + a-1; 

 if [X] = [1 [a] 2], then α = ω^ω^(a-1); 

 if [X] = [1 [1 \ a] 2], then α = εa-2. 

 

The effect of altering the entries of 

 [S] = [1 \ 1 \ 1 \ ... \ 1 \ m] (with n 1’s) 

is now considered. This separator has level φ(n, m-2). 

 

If the 1st 1 of [S] is replaced by X, [S] would have level  φ(n, m-2)+α; 

if the 2nd 1 of [S] is replaced by X, [S] would have level  εφ(n, m-2)+α; 

if the 3rd 1 of [S] is replaced by X, [S] would have level  ζφ(n, m-2)+α; 
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if the 4th 1 of [S] is replaced by X, [S] would have level  φ(3, φ(n, m-2)+α); 

if the kth 1 of [S] is replaced by X, [S] would have level  φ(k-1, φ(n, m-2)+α). 

 

If the nth 1 of [S] is replaced by X, [S] would have level  φ(n-1, φ(n, m-2)+α);  the limit ordinal of 

repeatedly replacing the nth 1 of [S] by ‘1 [S] 2’ would be  φ(n, m-1),  the level of the separator 

 [1 \ 1 \ 1 \ ... \ 1 \ m+1] (with n 1’s). 

 

If the m of [S] is replaced by ‘1 [S] 2’ with m = 2, [S] would have level  φ(n, φ(n, 0));  the limit ordinal of 

repeatedly doing this would be  φ(n+1, 0),  the level of the separator 

 [1 \ 1 \ 1 \ ... \ 1 \ 1 \ 2] (with n+1 1’s). 

 

In general, with a string of k 1’s and backslashes in separator (k ≥ 1), 

 {a, b [1 \ 1 \ 1 \ ... \ 1 \ 2] 2} = {a ‹0 \ 1 \ 1 \ ... \ 1 \ 2› b} 

                                            = {a ‹Rb› b}, 

where Rn = ‘b \ b \ ... \ b \ b ‹Rn-1› b’ (with k-1 backslashes, n > 1), 

 R1 = ‘0’. 

 

Note that 

 R2 = ‘b \ b \ ... \ b \ b’  (with k b’s), 

since ‘b ‹R1› b’ = ‘b ‹0› b’ = ‘b’. 

 

For example, when k = 4, 

 {a, 2 [1 \ 1 \ 1 \ 1 \ 2] 2} = {a ‹0 \ 1 \ 1 \ 1 \ 2› 2} 

                                      = {a ‹2 \ 2 \ 2 \ 2› 2}, 

 {a, 3 [1 \ 1 \ 1 \ 1 \ 2] 2} = {a ‹0 \ 1 \ 1 \ 1 \ 2› 3} 

                                      = {a ‹ 3\3\3\ 3 ‹3\3\3\3› 3 › 3}, 

 {a, 4 [1 \ 1 \ 1 \ 1 \ 2] 2} = {a ‹0 \ 1 \ 1 \ 1 \ 2› 4} 

                                      = {a ‹ 4\4\4\ 4 ‹ 4\4\4\ 4 ‹4\4\4\4› 4 › 4 › 4}. 

 

While simple nested separators (without the backslash symbol) are required to reach the ε0 level 

separator [1 \ 2], the ε1 level separator [1 \ 3] involves nested ‘superlevel 2’ brackets (with ‘\ 2’ 

appended to them), the ε2 separator [1 \ 4] involves nested ‘superlevel 3’ brackets, and so on. In order 

to reach the ε(ε0) level separator, the superlevels of the brackets would need to take on ε0 level 

complexity themselves, and they would require ε(ε0) level complexity just to get to ε(ε(ε0)). The ζ0 or 

φ(2, 0) level separator [1 \ 1 \ 2] actually requires nested superlevels (arrays to the right of the 

backslash) or ‘supernested’ separators – in short, a Super-Nested Array Notation. While the ε(ζ0+1) 

separator [1 \ 2 \ 2] involves nested ‘super-superlevel 2’ or ‘2-superlevel 2’ brackets, the ζ1 separator 

[1 \ 1 \ 3] needs supernested ‘2-superlevel 2’ brackets. Reaching ζ(ζ0) requires the bracket 

2-superlevels to be of ζ0 level complexity and ‘2-supernested’ separators are needed to achieve the 

φ(3, 0) level separator [1 \ 1 \ 1 \ 2]. Reaching φ(4, 0) requires ‘3-supernested’ separators and φ(5, 0) 

involves ‘4-supernested’ separators, and so on. The extended Super-Nested Array Notation, with an 

unlimited number of backslashes in the ‘base layers’ of separators, has a limit ordinal of φ(ω, 0). 

 

In order to go further, I need to introduce the next ‘hyperseparator’ symbol – the double backslash (\\). 

As with the single backslash, it can only appear within a separator or angle bracket array. The lowest 

separator to contain this is [1 \\ 2], which is defined as follows: 

 {a, b [1 \\ 2] 2} = {a ‹0 \\ 2› b} 

                        = {a ‹ b \ b \ b \ ... \ b › b}  (with b b’s within angle brackets). 

This is a φ(ω, 0)-recursive function. 
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For example, 

 {3, 2 [1 \\ 2] 2} = {3 ‹0 \\ 2› 2} 

                        = {3 ‹2 \ 2› 2} 

                        = {3 ‹0\2› 2 [1\2] 3 ‹0\2› 2 [2\2] 3 ‹0\2› 2 [1\2] 3 ‹0\2› 2} 

                        = {3,3 [2] 3,3 [1\2] 3,3 [2] 3,3 [2\2] 3,3 [2] 3,3 [1\2] 3,3 [2] 3,3}, 

 {3, 3 [1 \\ 2] 2} = {3 ‹0 \\ 2› 3} 

                        = {3 ‹3 \ 3 \ 3› 3}, 

 {3, 4 [1 \\ 2] 2} = {3 ‹0 \\ 2› 4} 

                        = {3 ‹4 \ 4 \ 4 \ 4› 4}. 

 

 [1 \\ 2]  has level  φ(ω, 0), 

 [2 \\ 2]  has level  φ(ω, 0)+1, 

 [1 [1 \ 2] 2 \\ 2]  has level  φ(ω, 0)+ε0, 

 [1 [1 \ 1 \ 1 \ ... \ 1 \ 2] 2 \\ 2]  (with n 1’s within inner brackets)  has level  φ(ω, 0)+φ(n, 0), 

 [1 [1 \\ 2] 2 \\ 2]  has level  φ(ω, 0)2, 

 [1 [1 \\ 2] 1 [1 \\ 2] 2 \\ 2]  has level  φ(ω, 0)^2, 

 [1 [2 \\ 2] 2 \\ 2]  has level  φ(ω, 0)^ω, 

 [1 [1 [1 \ 2] 2 \\ 2] 2 \\ 2]  has level  φ(ω, 0)^ε0, 

 [1 [1 [1 \\ 2] 2 \\ 2] 2 \\ 2]  has level  φ(ω, 0)^φ(ω, 0), 

 [1 \ 2 \\ 2]  has level  εφ(ω, 0)+1 = φ(ω, 0)^^ω, 

 [1 \ 1 \ 1 \ ... \ 1 \ 2 \\ 2]  (with n 1’s)  has level  φ(n, φ(ω, 0)+1). 

 

I next define 

 {a, b [1 \\ n #] 2} = {a ‹0 \\ n #› b} 

                           = {a ‹ b \ b \ b \ ... \ b \\ n-1 # › b}  (with b b’s within angle brackets), 

where # is rest of array. 

 

Since  φ(n, φ(ω, α)+1)  has limit ordinal  φ(ω, α+1)  as n tends to ω, it follows that 

 [1 \\ 3]  has level  φ(ω, 1), 

 [1 \ 1 \ 1 \ ... \ 1 \ 2 \\ 3]  (with n 1’s)  has level  φ(n, φ(ω, 1)+1), 

 [1 \\ 4]  has level  φ(ω, 2), 

 [1 \ 1 \ 1 \ ... \ 1 \ 2 \\ 4]  (with n 1’s)  has level  φ(n, φ(ω, 2)+1), 

 [1 \\ 5]  has level  φ(ω, 3), 

 [1 \\ 6]  has level  φ(ω, 4), 

 [1 \\ 1, 2]  has level  φ(ω, ω), 

 [1 \\ 2, 2]  has level  φ(ω, ω+1), 

 [1 \\ 3, 2]  has level  φ(ω, ω+2), 

 [1 \\ 1, 3]  has level  φ(ω, ω2), 

 [1 \\ 1, 4]  has level  φ(ω, ω3), 

 [1 \\ 1, 1, 2]  has level  φ(ω, ω^2), 

 [1 \\ 1, 1, 3]  has level  φ(ω, (ω^2)2), 

 [1 \\ 1, 1, 1, 2]  has level  φ(ω, ω^3), 

 [1 \\ 1, 1, 1, 1, 2]  has level  φ(ω, ω^4), 

 [1 \\ 1 [2] 2]  has level  φ(ω, ω^ω), 

 [1 \\ 1 [1 \ 2] 2]  has level  φ(ω, ε0), 

 [1 \\ 1 [1 \\ 2] 2]  has level  φ(ω, φ(ω, 0)), 

 [1 \\ 1 [1 \\ 1 [1 \\ 2] 2] 2]  has level  φ(ω, φ(ω, φ(ω, 0))), 

 [1 \\ 1 [1 \\ 1 [1 \\ 1 [1 \\ 2] 2] 2] 2]  has level  φ(ω, φ(ω, φ(ω, φ(ω, 0)))). 
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 [1 \\ 1 \ 2]  has level  φ(ω+1, 0) = φ(ω, φ(ω+1, 0)), 

 [1 \ 1 \ 1 \ ... \ 1 \ 2 \\ 1 \ 2]  (with n 1’s before \\)  has level  φ(n, φ(ω+1, 0)+1), 

 [1 \\ 2 \ 2]  has level  φ(ω, φ(ω+1, 0)+1), 

 [1 \\ 3 \ 2]  has level  φ(ω, φ(ω+1, 0)+2), 

 [1 \\ 1, 2 \ 2]  has level  φ(ω, φ(ω+1, 0)+ω), 

 [1 \\ 1, 3 \ 2]  has level  φ(ω, φ(ω+1, 0)+ω2), 

 [1 \\ 1, 1, 2 \ 2]  has level  φ(ω, φ(ω+1, 0)+ω^2), 

 [1 \\ 1, 1, 1, 2 \ 2]  has level  φ(ω, φ(ω+1, 0)+ω^3), 

 [1 \\ 1 [2] 2 \ 2]  has level  φ(ω, φ(ω+1, 0)+ω^ω), 

 [1 \\ 1 [1 \\ 1 \ 2] 2 \ 2]  has level  φ(ω, φ(ω+1, 0)2), 

 [1 \\ 1 [1 \\ 1 [1 \\ 1 \ 2] 2 \ 2] 2 \ 2]  has level  φ(ω, φ(ω, φ(ω+1, 0)2)), 

 [1 \\ 1 [1 \\ 1 [1 \\ 1 [1 \\ 1 \ 2] 2 \ 2] 2 \ 2] 2 \ 2]  has level  φ(ω, φ(ω, φ(ω, φ(ω+1, 0)2))), 

 [1 \\ 1 \ 3]  has level  φ(ω+1, 1) = φ(ω, φ(ω+1, 1)). 

 

The development of the  [1 \\ X \ 3]  separators mirrors the  [1 \\ X \ 2]  set except that  φ(ω+1, 0)  is 

replaced by  φ(ω+1, 1)  in each of the associated ordinals. It follows that 

 [1 \\ 1 \ 4]  has level  φ(ω+1, 2), 

 [1 \\ 1 \ 5]  has level  φ(ω+1, 3), 

 [1 \\ 1 \ 1, 2]  has level  φ(ω+1, ω), 

 [1 \\ 1 \ 1, 3]  has level  φ(ω+1, ω2), 

 [1 \\ 1 \ 1, 1, 2]  has level  φ(ω+1, ω^2), 

 [1 \\ 1 \ 1, 1, 1, 2]  has level  φ(ω+1, ω^3), 

 [1 \\ 1 \ 1 [2] 2]  has level  φ(ω+1, ω^ω), 

 [1 \\ 1 \ 1 [1 \ 2] 2]  has level  φ(ω+1, ε0), 

 [1 \\ 1 \ 1 [1 \\ 1 \ 2] 2]  has level  φ(ω+1, φ(ω+1, 0)), 

 [1 \\ 1 \ 1 [1 \\ 1 \ 1 [1 \\ 1 \ 2] 2] 2]  has level  φ(ω+1, φ(ω+1, φ(ω+1, 0))), 

 [1 \\ 1 \ 1 [1 \\ 1 \ 1 [1 \\ 1 \ 1 [1 \\ 1 \ 2] 2] 2] 2]  has level  φ(ω+1, φ(ω+1, φ(ω+1, φ(ω+1, 0)))), 

 [1 \\ 1 \ 1 \ 2]  has level  φ(ω+2, 0). 

 

[1 \\ X \ 1 \ 2]  mirrors the  [1 \\ X \ 2]  set except that  φ(ω+1, 0)  is replaced by  φ(ω+1, φ(ω+2, 0))  in 

each of the associated ordinals. It follows that 

 [1 \\ 1 \ 2 \ 2]  has level  φ(ω+1, φ(ω+2, 0)+1), 

 [1 \\ 1 \ 3 \ 2]  has level  φ(ω+1, φ(ω+2, 0)+2), 

 [1 \\ 1 \ 1 [1 \\ 1 \ 1 \ 2] 2 \ 2]  has level  φ(ω+1, φ(ω+2, 0)2), 

 [1 \\ 1 \ 1 [1 \\ 1 \ 1 [1 \\ 1 \ 1 \ 2] 2 \ 2] 2 \ 2]  has level  φ(ω+1, φ(ω+1, φ(ω+2, 0)2)), 

 [1 \\ 1 \ 1 \ 3]  has level  φ(ω+2, 1), 

 [1 \\ 1 \ 1 \ 4]  has level  φ(ω+2, 2), 

 [1 \\ 1 \ 1 \ 1, 2]  has level  φ(ω+2, ω), 

 [1 \\ 1 \ 1 \ 1 [1 \\ 1 \ 1 \ 2] 2]  has level  φ(ω+2, φ(ω+2, 0)), 

 [1 \\ 1 \ 1 \ 1 [1 \\ 1 \ 1 \ 1 [1 \\ 1 \ 1 \ 2] 2] 2]  has level  φ(ω+2, φ(ω+2, φ(ω+2, 0))). 

 

 [1 \\ 1 \ 1 \ 1 \ 2]  has level  φ(ω+3, 0), 

 [1 \\ 1 \ 1 \ 1 \ 3]  has level  φ(ω+3, 1), 

 [1 \\ 1 \ 1 \ 1 \ 1 [1 \\ 1 \ 1 \ 1 \ 2] 2]  has level  φ(ω+3, φ(ω+3, 0)), 

 [1 \\ 1 \ 1 \ 1 \ 1 [1 \\ 1 \ 1 \ 1 \ 1 [1 \\ 1 \ 1 \ 1 \ 2] 2] 2]  has level  φ(ω+3, φ(ω+3, φ(ω+3, 0))), 

 [1 \\ 1 \ 1 \ 1 \ 1 \ 2]  has level  φ(ω+4, 0), 

 [1 \\ 1 \ 1 \ 1 \ 1 \ 1 \ 2]  has level  φ(ω+5, 0), 

 [1 \\ 1 \ 1 \ ... \ 1 \ 2]  (with n 1’s after \\)  has level  φ(ω+n, 0), 

 [1 \\ 1 \ 1 \ ... \ 1 \ m]  (with n 1’s after \\)  has level  φ(ω+n, m-2). 
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With two double backslashes, 

 [1 \\ 1 \\ 2]  has level  φ(ω2, 0), 

 [1 \ 2 \\ 1 \\ 2]  has level  εφ(ω2, 0)+1 = φ(ω2, 0)^^ω, 

 [1 \ 1 \ ... \ 1 \ 2 \\ 1 \\ 2]  (with n 1’s before first \\)  has level  φ(n, φ(ω2, 0)+1), 

 [1 \\ 2 \\ 2]  has level  φ(ω, φ(ω2, 0)+1), 

 [1 \\ 3 \\ 2]  has level  φ(ω, φ(ω2, 0)+2), 

 [1 \\ 1, 2 \\ 2]  has level  φ(ω, φ(ω2, 0)+ω), 

 [1 \\ 1 [1 \\ 1 \\ 2] 2 \\ 2]  has level  φ(ω, φ(ω2, 0)2), 

 [1 \\ 1 [1 \\ 1 [1 \\ 1 \\ 2] 2 \\ 2] 2 \\ 2]  has level  φ(ω, φ(ω, φ(ω2, 0)2)), 

 [1 \\ 1 \ 2 \\ 2]  has level  φ(ω+1, φ(ω2, 0)+1), 

 [1 \\ 1 \ 1 \ ... \ 1 \ 2 \\ 2]  (with n 1’s between \\’s)  has level  φ(ω+n, φ(ω2, 0)+1). 

 

When α is a limit ordinal and γ < α,  φ(γ, φ(α, β)+1)  has limit ordinal  φ(α, β+1)  as γ tends to α. The 

ordinal  φ(ω+n, φ(ω2, 0)+1)  therefore has limit ordinal  φ(ω2, 1)  as n tends to ω. 

 

 [1 \\ 1 \\ 3]  has level  φ(ω2, 1), 

 [1 \\ 1 \\ 4]  has level  φ(ω2, 2), 

 [1 \\ 1 \\ 1, 2]  has level  φ(ω2, ω), 

 [1 \\ 1 \\ 1 [1 \\ 1 \\ 2] 2]  has level  φ(ω2, φ(ω2, 0)), 

 [1 \\ 1 \\ 1 [1 \\ 1 \\ 1 [1 \\ 1 \\ 2] 2] 2]  has level  φ(ω2, φ(ω2, φ(ω2, 0))). 

 

In fact, the development of  [1 \\ 1 \\ X]  separators mirrors the  [1 \\ X]  set except that  φ(ω+n, α)  is 

replaced by  φ(ω2+n, α)  in each of the associated ordinals. It follows that 

 [1 \\ 1 \\ 1 \ 2]  has level  φ(ω2+1, 0), 

 [1 \\ 1 \\ 1 \ 3]  has level  φ(ω2+1, 1), 

 [1 \\ 1 \\ 1 \ 4]  has level  φ(ω2+1, 2), 

 [1 \\ 1 \\ 1 \ 1 \ 2]  has level  φ(ω2+2, 0), 

 [1 \\ 1 \\ 1 \ 1 \ 3]  has level  φ(ω2+2, 1), 

 [1 \\ 1 \\ 1 \ 1 \ 1 \ 2]  has level  φ(ω2+3, 0), 

 [1 \\ 1 \\ 1 \ 1 \ 1 \ 1 \ 2]  has level  φ(ω2+4, 0), 

 [1 \\ 1 \\ 1 \ 1 \ ... \ 1 \ 2]  (with n single backslashes)  has level  φ(ω2+n, 0), 

 [1 \\ 1 \\ 1 \ 1 \ ... \ 1 \ m]  (with n single backslashes)  has level  φ(ω2+n, m-2). 

 

Each additional double backslash adds ω to the left argument of the 2-ary φ Veblen function. 

 [1 \\ 1 \\ 1 \\ 2]  has level  φ(ω3, 0), 

 [1 \\ 1 \\ 1 \\ 3]  has level  φ(ω3, 1) (limit ordinal of  φ(ω2+n, φ(ω3, 0)+1)  as n → ω), 

 [1 \\ 1 \\ 1 \\ m]  has level  φ(ω3, m-2), 

 [1 \\ 1 \\ 1 \\ 1 \ 2]  has level  φ(ω3+1, 0), 

 [1 \\ 1 \\ 1 \\ 1 \ 1 \ ... \ 1 \ m]  (with n single backslashes)  has level  φ(ω3+n, m-2), 

 [1 \\ 1 \\ 1 \\ 1 \\ 2]  has level  φ(ω4, 0), 

 [1 \\ 1 \\ 1 \\ 1 \\ m]  has level  φ(ω4, m-2), 

 [1 \\ 1 \\ 1 \\ 1 \\ 1 \ 2]  has level  φ(ω4+1, 0), 

 [1 \\ 1 \\ 1 \\ 1 \\ 1 \ 1 \ ... \ 1 \ m]  (with n single backslashes)  has level  φ(ω4+n, m-2), 

 [1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2]  has level  φ(ω5, 0). 

 

In general, with n double backslashes, 

 [1 \\ 1 \\ ... \\ 1 \\ 2]  has level  φ(ωn, 0), 

 [1 \\ 1 \\ ... \\ 1 \\ k]  has level  φ(ωn, k-2), 

 [1 \\ 1 \\ ... \\ 1 \\ 1 \ 2]  has level  φ(ωn+1, 0), 
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 [1 \\ 1 \\ ... \\ 1 \\ 1 \ 1 \ ... \ 1 \ k]  (with m single backslashes)  has level  φ(ωn+m, k-2). 

 

With c double backslashes and d single backslashes, 

 {a, b [1 \\ 1 \\ ... \\ 1 \\ 1 \ 1 \ 1 \ ... \ 1 \ 2] 2} 

    = {a ‹0 \\ 1 \\ ... \\ 1 \\ 1 \ 1 \ 1 \ ... \ 1 \ 2› b} 

    = {a ‹Rb› b}, 

where Rn = ‘b \ b \ ... \ b \\ b \ b \ ... \ b \\ ...... \\ b \ b \ ... \ b \\ b \ b \ ... \ b \ b ‹Rn-1› b’ 

   (with b b’s and \’s followed by \\ (c times), followed by d-1 b’s and \’s, followed by ‘b ‹Rn-1› b’), 

 R1 = ‘0’. 

 

The first separator requiring the third in the sequence of hyperseparators (a treble backslash), 

 {a, b [1 \\\ 2] 2} = {a ‹0 \\\ 2› b} 

                         = {a ‹R› b}, 

where R = ‘b \ b \ ... \ b \\ b \ b \ ... \ b \\ ...... \\ b \ b \ ... \ b’ 

      (with b^2 b’s and b-1 double backslashes). 

This is a φ(ω^2, 0)-recursive function. The R string represents a 2-dimensional ‘hyperspace’ (or 

2-hyperspace) of b^2 ‘hyperentries’ of b, separated by the backslashes. 

 

I now denote the double backslash and the treble backslash by the symbols [2]\ and [3]\ respectively 

(the single backslash is a shorthand for [1]\). In general, the nth hyperseparator [n]\ denotes \\\...\ with 

n backslashes, and is analogous to the nth simple separator [n]; the [n]\ hyperseparator ranks above 

[m]\ whenever n > m. Hyperseparators are so special that they cannot appear in the ‘base layer’ of a 

main array (within curly brackets), as in  {a, b \ 2},  {a, b [2]\ 2}  and  {a, b [n]\ 2}  – this enables me to 

generate ‘normal’ separators (i.e. non-hyperseparators) with higher ordinal levels, and a more 

advanced notation that would be the case if hyperseparators had been allowed in the base layers of 

main arrays. 

 

The array  {a, b [1 \\\ 2] 2}  can be rewritten as follows: 

 {a, b [1 [3]\ 2] 2} = {a ‹0 [3]\ 2› b} 

                           = {a ‹R› b}, 

where R = ‘b ‹2›\ b’ 

    = ‘b ‹1›\ b [2]\ b ‹1›\ b [2]\ ...... [2]\ b ‹1›\ b’ (with b ‘b ‹1›\ b’ strings) 

    = ‘b \ b \ ... \ b [2]\ b \ b \ ... \ b [2]\ ...... [2]\ b \ b \ ... \ b’ 

       (with b^2 b’s and b b’s within each [2]\). 

Note that  ‘b ‹0›\ b’ = ‘b’,  just as  ‘b ‹0› b’ = ‘b’. 

 

The iterating string building function (Rn) is only utilised when the final separator prior to the next 

non-1 entry (after the initial 0) in the angle brackets is a single backslash (\ or [1]\). 

 

When # denotes the rest of the array, 

 {a, b [1 [c]\ 1 [d]\ 1 [e]\ 1 [2]\ 1 \ 1 \ 1 \ k #] 2} 

    = {a ‹ 0 [c]\ 1 [d]\ 1 [e]\ 1 [2]\ 1 \ 1 \ 1 \ k # › b} 

    = {a ‹Rb› b}, 

where Rn = ‘b ‹c-1›\ b [c]\ b ‹d-1›\ b [d]\ b ‹e-1›\ b [e]\ b ‹1›\ b [2]\ b \ b \ b ‹Rn-1› b \ k-1 #’, 

 R1 = ‘0’. 

Note that c ≥ d ≥ e ≥ 2 as trailing 1’s are lopped off just as with simpler nested arrays (below ε0 level). 

 

When X is a string of characters within a normal separator (below \ level), 

 {a, b [1 [c]\ 1 [d]\ 1 [e]\ 1 [2]\ 1 \ 1 \ 1 \ 1 [X] k #] 2} 
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    = {a ‹ 0 [c]\ 1 [d]\ 1 [e]\ 1 [2]\ 1 \ 1 \ 1 \ 1 [X] k # › b} 

    = {a ‹R› b}, 

where R = ‘b ‹c-1›\ b [c]\ b ‹d-1›\ b [d]\ b ‹e-1›\ b [e]\ b ‹1›\ b [2]\ b \ b \ b \ b ‹X’› b [X] k-1 #’ 

and X’ is identical to X except that the first entry has been reduced by 1. 

 

When the last separator before the next non-1 entry (k) is a hyperseparator of [2]\ or higher, 

 {a, b [1 [c]\ 1 [d]\ 1 [e]\ 1 [2]\ k #] 2} 

    = {a ‹ 0 [c]\ 1 [d]\ 1 [e]\ 1 [2]\ k # › b} 

    = {a ‹R› b}, 

where R = ‘b ‹c-1›\ b [c]\ b ‹d-1›\ b [d]\ b ‹e-1›\ b [e]\ b ‹1›\ b [2]\ k-1 #’. 

 

 [1 [3]\ 2]  has level  φ(ω^2, 0), 

 [1 \ 2 [3]\ 2]  has level  εφ(ω^2, 0)+1 = φ(ω^2, 0)^^ω, 

 [1 \ 1 \ 1 \ ... \ 1 \ 2 [3]\ 2]  (with n 1’s)  has level  φ(n, φ(ω^2, 0)+1), 

 [1 [2]\ 2 [3]\ 2]  has level  φ(ω, φ(ω^2, 0)+1), 

 [1 [2]\ 1 [2]\ ... [2]\ 1 [2]\ 2 [3]\ 2]  (with n 1’s)  has level  φ(ωn, φ(ω^2, 0)+1), 

 [1 [3]\ 3]  has level  φ(ω^2, 1)  (limit ordinal of  φ(ωn, φ(ω^2, 0)+1)  as n → ω), 

 [1 [3]\ 1, 2]  has level  φ(ω^2, ω), 

 [1 [3]\ 1 \ 2]  has level  φ(ω^2+1, 0), 

 [1 [3]\ 1 \ 1 \ 2]  has level  φ(ω^2+2, 0), 

 [1 [3]\ 1 [2]\ 2]  has level  φ(ω^2+ω, 0), 

 [1 [3]\ 1 [2]\ 1 [2]\ 2]  has level  φ(ω^2+ω2, 0), 

 [1 [3]\ 1 [3]\ 2]  has level  φ((ω^2)2, 0), 

 [1 [3]\ 1 [3]\ 1 [3]\ 2]  has level  φ((ω^2)3, 0), 

 [1 [4]\ 2]  has level  φ(ω^3, 0), 

 [1 [5]\ 2]  has level  φ(ω^4, 0), 

 [1 [n]\ 2]  has level  φ(ω^(n-1), 0). 

 

Now the number in the hyperseparator can itself be turned into an array: 

 [1 [1, 2]\ 2]  has level  φ(ω^ω, 0), 

 [1 [n] 2 [1, 2]\ 2]  has level  φ(ω^(n-1), φ(ω^ω, 0)+1), 

 [1 [1, 2]\ 3]  has level  φ(ω^ω, 1)  (limit ordinal of  φ(ω^n, φ(ω^ω, 0)+1)  as n → ω), 

 [1 [1, 2]\ 1, 2]  has level  φ(ω^ω, ω), 

 [1 [1, 2]\ 1 \ 2]  has level  φ(ω^ω+1, 0), 

 [1 [1, 2]\ 1 [2]\ 2]  has level  φ(ω^ω+ω, 0), 

 [1 [1, 2]\ 1 [3]\ 2]  has level  φ(ω^ω+ω^2, 0), 

 [1 [1, 2]\ 1 [n]\ 2]  has level  φ(ω^ω+ω^(n-1), 0), 

 [1 [1, 2]\ 1 [1, 2]\ 2]  has level  φ((ω^ω)2, 0), 

 [1 [2, 2]\ 2]  has level  φ((ω^ω)ω, 0) = φ(ω^(ω+1), 0), 

 [1 [3, 2]\ 2]  has level  φ(ω^(ω+2), 0), 

 [1 [1, 3]\ 2]  has level  φ(ω^(ω2), 0), 

 [1 [1, 4]\ 2]  has level  φ(ω^(ω3), 0), 

 [1 [1, 1, 2]\ 2]  has level  φ(ω^ω^2, 0), 

 [1 [1, 1, 3]\ 2]  has level  φ(ω^((ω^2)2), 0), 

 [1 [1, 1, 1, 2]\ 2]  has level  φ(ω^ω^3, 0), 

 [1 [1, 1, 1, 1, 2]\ 2]  has level  φ(ω^ω^4, 0), 

 [1 [1 [2] 2]\ 2]  has level  φ(ω^ω^ω, 0), 

 [1 [1 [3] 2]\ 2]  has level  φ(ω^ω^ω^2, 0), 

 [1 [1 [1, 2] 2]\ 2]  has level  φ(ω^ω^ω^ω, 0), 
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 [1 [1 [1 [2] 2] 2]\ 2]  has level  φ(ω^ω^ω^ω^ω, 0), 

 [1 [1 [1 [1, 2] 2] 2]\ 2]  has level  φ(ω^ω^ω^ω^ω^ω, 0). 

 

If [X] has level α then  [1 [X]\ 2]  has level  φ(ω^α, 0).  I can now nest hyperseparator arrays within 

hyperseparator arrays – the foundations of a Hyper-Nested Array Notation. This is where the 

mathematics gets so exciting! 

 

 [1 [1 \ 2]\ 2]  has level  φ(ε0, 0), 

 [1 [1 \ 2]\ 3]  has level  φ(ε0, 1)  (limit ordinal of  φ(α, φ(ε0, 0)+1)  as α → ε0), 

 [1 [1 \ 2]\ 1, 2]  has level  φ(ε0, ω), 

 [1 [1 \ 2]\ 1 \ 2]  has level  φ(ε0+1, 0), 

 [1 [1 \ 2]\ 1 [1 \ 2]\ 2]  has level  φ(ε02, 0), 

 [1 [2 \ 2]\ 2]  has level  φ(ε0ω, 0), 

 [1 [1, 2 \ 2]\ 2]  has level  φ(ε0ω^ω, 0), 

 [1 [1 [1 \ 2] 2 \ 2]\ 2]  has level  φ(ε0^2, 0), 

 [1 [1 \ 3]\ 2]  has level  φ(ε1, 0), 

 [1 [1 \ 1, 2]\ 2]  has level  φ(εω, 0), 

 [1 [1 \ 1 [1 \ 2] 2]\ 2]  has level  φ(ε(ε0), 0), 

 [1 [1 \ 1 \ 2]\ 2]  has level  φ(ζ0, 0) = φ(φ(2, 0), 0), 

 [1 [1 \ 1 \ 1 \ 2]\ 2]  has level  φ(φ(3, 0), 0), 

 [1 [1 [2]\ 2]\ 2]  has level  φ(φ(ω, 0), 0), 

 [1 [1 [3]\ 2]\ 2]  has level  φ(φ(ω^2, 0), 0), 

 [1 [1 [1, 2]\ 2]\ 2]  has level  φ(φ(ω^ω, 0), 0), 

 [1 [1 [1 [2] 2]\ 2]\ 2]  has level  φ(φ(ω^ω^ω, 0), 0), 

 [1 [1 [1 \ 2]\ 2]\ 2]  has level  φ(φ(ε0, 0), 0), 

 [1 [1 [1 [2]\ 2]\ 2]\ 2]  has level  φ(φ(φ(ω, 0), 0), 0), 

 [1 [1 [1 [1 \ 2]\ 2]\ 2]\ 2]  has level  φ(φ(φ(ε0, 0), 0), 0), 

 [1 [1 [1 [1 [1 \ 2]\ 2]\ 2]\ 2]\ 2]  has level  φ(φ(φ(φ(ε0, 0), 0), 0), 0), 

 [1 [1 [1 [1 [1 [1 \ 2]\ 2]\ 2]\ 2]\ 2]\ 2]  has level  φ(φ(φ(φ(φ(ε0, 0), 0), 0), 0), 0). 

The sequence of separators starting with the last three has limit ordinal Γ0 = φ(1, 0, 0). 

 

The Main Rules and Angle Bracket Rules apply similarly to hyperseparators and hyper-angle bracket 

arrays (each signified by a single backslash after the closed bracket), just as they do to normal 

separators and angle bracket arrays (i.e. with no backslash after the closed bracket). There are three 

additional Angle Bracket (B) Rules when the first hyperentry (space before first hyperseparator) 

contains a single 0:- 

 

Rule B1 (only 1 entry of either 0 or 1 within hyper-angle bracket array): 

 ‘a ‹0›\ b’ = ‘a’, 

 ‘a ‹1›\ b’ = ‘a \ a \ ... \ a’ (with b a’s). 

 

Rule B2 (first hyperentry is 0, next non-1 entry (k) is the first entry in its hyperentry but is not 

contained in the first hyperentry in its 1-hyperspace): 

 ‘a ‹ 0 [A1]\ 1 [A2]\ ... 1 [Ap]\ 1 \ k # ›(\) b’ = ‘a ‹Rb›(\) b’, 

where Rn = ‘b ‹A1’›\ b [A1]\ b ‹A2’›\ b [A2]\ ... b ‹Ap’›\ b [Ap]\ b ‹Rn-1› b \ k-1 #’ (n > 1), 

 R1 = ‘0’. 

(p ≥ 0. Final separator before k is \ or [1]\.) 

If p = 0, then 
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 ‘a ‹ 0 \ k # ›(\) b’ = ‘a ‹b ‹b ‹ ... ‹b ‹b \ k-1 #› b \ k-1 #› ... › b \ k-1 #› b \ k-1 #›(\) b’ 

         (with b-1 angle brackets). 

 

Rule B3 (Rules B1-2 do not apply, first hyperentry is 0): 

 ‘a ‹ 0 [A1]\ 1 [A2]\ ... 1 [Ap]\ 1 [B1] 1 [B2] ... 1 [Bq] k # ›(\) b’ 

    = ‘a ‹ b ‹A1’›\ b [A1]\ b ‹A2’›\ b [A2]\ ... b ‹Ap’›\ b [Ap]\ 

             b ‹B1’› b [B1] b ‹B2’› b [B2] ... b ‹Bq’› b [Bq] k-1 # ›(\) b’. 

(p ≥ 1, q ≥ 0. (p = 0 would be identical to Rule A4.) Final separator before k is not \ or [1]\.) 

 

Notes: 

1. A1, A2, ... , Ap are strings of characters within hyperseparators. 

2. B1, B2, ... , Bq are strings of characters within normal separators. 

3. A1’, A2’, ... , Ap’, B1’, B2’, ... , Bq’ are strings of characters within angle brackets that are identical to 

the strings A1, A2, ... , Ap, B1, B2, ... , Bq respectively except that the first entries of each have 

been reduced by 1. If Ai (for some 1 ≤ i ≤ p) begins with 1, Ai’ begins with 0. 

4. Rn is an iterating string building function which creates and nests the same string of characters 

around itself n-1 times before being replaced by the string ‘0’. 

5. # is a string of characters representing the remainder of the array (if it exists). 

6. The comma is used as shorthand for the [1] separator. 

7. The isolated backslash \ is used as shorthand for the [1]\ hyperseparator. 

8. A backslash in brackets (\) immediately after the closed outer angle bracket denotes that when 

the left-hand side (LHS) of the equation contains a backslash after the closed outer angle bracket 

then so does the right-hand side (RHS). On the other hand, if the LHS does not contain that 

backslash then the RHS does not either. 

 

For example, (\) in Rule B3 (with p = q = 1) means that: 

 ‘a ‹ 0 [A1]\ 1 [B1] k # › b’ = ‘a ‹ b ‹A1’›\ b [A1]\ b ‹B1’› b [B1] k-1 # › b’ 

and ‘a ‹ 0 [A1]\ 1 [B1] k # ›\ b’ = ‘a ‹ b ‹A1’›\ b [A1]\ b ‹B1’› b [B1] k-1 # ›\ b’. 

 

Modifications to the regular Angle Bracket (A) Rules: 

 

The backslash in brackets (\) can be appended to the closed outer angle brackets in Rules A2-5 

(including closed square brackets in Rule A5) similarly as above. For example, in Rule A4 (with k = 2), 

 ‘a ‹0 [A1] 1 [A2] n #› b’ = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b [A2] n-1 # › b’ 

and ‘a ‹0 [A1] 1 [A2] n #›\ b’ = ‘a ‹ b ‹A1’› b [A1] b ‹A2’› b [A2] n-1 # ›\ b’. 

 

Rule A2 is modified as follows: 

 ‘a ‹# [A] 1›(\) b’ = ‘a ‹#›(\) b’, 

 ‘a ‹# [A]\ 1›(\) b’ = ‘a ‹#›(\) b’, 

 ‘a ‹# [A] 1 [B]\ #*›(\) b’ = ‘a ‹# [B]\ #*›(\) b’ (regardless of the levels of [A] and [B]). 

When level of [A] is less than level of [B], 

 ‘a ‹# [A] 1 [B] #*›(\) b’ = ‘a ‹# [B] #*›(\) b’, 

 ‘a ‹# [A]\ 1 [B]\ #*›(\) b’ = ‘a ‹# [B]\ #*›(\) b’. 

 

This is the first stage of my Hyper-Nested Array Notation. The limit ordinal of this notation is Γ0, the 

Feferman-Schütte ordinal. 

 

A separator is generally of the form 

 [A1 [H1]\ A2 [H2]\ ... [Hk-1]\ Ak], 
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where Ai = ‘ni,1 [Si,1] ni,2 [Si,2] ... [Si,pi-1] ni,pi’ 

and k ≥ 1, pi ≥ 1, each of [Hi]\ is an hyperseparator, each of [Si,j] is a normal separator and each of ni,j 

represents an entry (number). A hyperseparator is as above but of the form 

 [A1 [H1]\ A2 [H2]\ ... [Hk-1]\ Ak]\ 

with a backslash added to the right of the outermost closed square bracket. 

 

In Rules M2 and A2, the (ordinal) levels of two normal separators [A] and [B] (or hyperseparators [A]\ 

and [B]\) are determined by the highest ranking hyperseparator within their ‘base layers’, then the 

numbers of them when they are identical. When the numbers are equal, this is repeated for the 

subarrays of [A] and [B] to the right of the rightmost highest ranking hyperseparator. When the highest 

ranking hyperseparators and their numbers within the subarrays are identical, this is repeated again 

for the subarrays within the subarrays, until no more hyperseparators remain, in which case the levels 

of [A] and [B] are determined by the highest ranking normal separator within their ‘base layers’, then 

their numbers when identical. When [A] and [B] are still tied on that measure, this is repeated for the 

subarrays of [A] and [B] to the right of the last highest separator, and, if still equal, repeated again for 

the subarrays within the subarrays, until no more separators remain (i.e. we are left with single 

entries). If the final entries of [A] and [B] are the same, they are deleted along with the last separators 

of [A] and [B], and the entire process is repeated for the truncated [A] and [B], until each of these 

consists of a single entry. When we obtain a lower level or number for [A] than for [B] on some 

measure at a particular point, then the original [A] ranks lower than the original [B] and the ‘[A] 1’ 

string is deleted. (The levels of separators or hyperseparators within the ‘base layers’ of [A] and [B] 

are first determined by the highest ranking hyperseparator (normal separator in the absence of 

hyperseparators) within their ‘base layers’ (in the second lowest layers of [A] and [B]), and so on.) 

 

The most complicated rule is Rule B2. For example, 

 {3, 2 [1 [3]\ 1 [2]\ 1 \ 1 \ 1 \ 7] 2} = {3 ‹ 0 [3]\ 1 [2]\ 1 \ 1 \ 1 \ 7 › 2} 

                                                   = {3 ‹R› 2}, 

where R = ‘2 ‹2›\ 2 [3]\ 2 ‹1›\ 2 [2]\ 2 \ 2 \ 2 \ 6’ 

    = ‘2 \ 2 \\ 2 \ 2 \\\ 2 \ 2 \\ 2 \ 2 \ 2 \ 6’. 

 

 {3, 3 [1 [3]\ 1 [2]\ 1 \ 1 \ 1 \ 7] 2} = {3 ‹ 0 [3]\ 1 [2]\ 1 \ 1 \ 1 \ 7 › 3} 

                                                   = {3 ‹R› 3}, 

where R = ‘3 ‹2›\ 3 [3]\ 3 ‹1›\ 3 [2]\ 3\3\ 3‹S›3 \6’ 

    = ‘3\3\3 \\ 3\3\3 \\ 3\3\3 \\\ 3\3\3 \\ 3\3\ 3‹S›3 \6’, 

 S = ‘3\3\3 \\ 3\3\3 \\ 3\3\3 \\\ 3\3\3 \\ 3\3\3\6’. 

 

 {3, 4 [1 [3]\ 1 [2]\ 1 \ 1 \ 1 \ 7] 2} = {3 ‹ 0 [3]\ 1 [2]\ 1 \ 1 \ 1 \ 7 › 4} 

                                                   = {3 ‹R› 4}, 

where R = ‘4 ‹2›\ 4 [3]\ 4 ‹1›\ 4 [2]\ 4\4\ 4‹S›4 \6’ 

    = ‘4\4\4\4 \\ 4\4\4\4 \\ 4\4\4\4 \\ 4\4\4\4 \\\ 4\4\4\4 \\ 4\4\ 4‹S›4 \6’, 

 S = ‘4\4\4\4 \\ 4\4\4\4 \\ 4\4\4\4 \\ 4\4\4\4 \\\ 4\4\4\4 \\ 4\4\ 4‹T›4 \6’, 

 T = ‘4\4\4\4 \\ 4\4\4\4 \\ 4\4\4\4 \\ 4\4\4\4 \\\ 4\4\4\4 \\ 4\4\4\6’. 

 

But I can extend my Hyper-Nested Array Notation even further! Using the forward slash (for want of a 

better notation), I can define 

 {a, b [1 / 2] 2} = {a ‹0 / 2› b} 

                       = {a ‹b ‹b ‹ ... ‹b ‹b›\ b›\ ... ›\ b›\ b› b} 

     (with b b’s from centre to right and b-2 backslashes). 

This is equivalent to 
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 {a, b [1 [1 [ ... [1 [1, 2]\ 2]\ ... ]\ 2]\ 2] 2} 

     (with b-1 square brackets and b-2 backslashes, for b ≥ 3) 

and is a Γ0-recursive function. 

 

For example, 

 {3, 2 [1 / 2] 2} = {3 ‹0 / 2› 2} 

                       = {3 ‹2› 2} 

                       = {3, 3 [2] 3, 3}, 

 {3, 3 [1 / 2] 2} = {3 ‹0 / 2› 3} 

                       = {3 ‹3 ‹3›\ 3› 3} 

                       = {3 ‹ 3\3\3 \\ 3\3\3 \\ 3\3\3 [3]\ 3\3\3 \\ 3\3\3 \\ 3\3\3 [3]\ 3\3\3 \\ 3\3\3 \\ 3\3\3 › 3}, 

 {3, 4 [1 / 2] 2} = {3 ‹0 / 2› 4} 

                       = {3 ‹4 ‹4 ‹4›\ 4›\ 4› 4}, 

 {3, 5 [1 / 2] 2} = {3 ‹0 / 2› 5} 

                       = {3 ‹5 ‹5 ‹5 ‹5›\ 5›\ 5›\ 5› 5}. 

 

The separator [1 / 2] has level Γ0. But, already, this has made me feel I’m halfway there to infinity! 

 

I have devised this monster notation to try to explain the truly astonishing growth rate of Friedman’s 

TREE sequence (finite form of Kruskal’s Tree Theorem). There’s no exaggeration whatsoever in the 

fact that its growth rate exceeds that of 

 f(n) = {3, n [1 / 2] 2} 

which is at Γ0 level. However, the ordinal measuring the strength of Kruskal’s theorem is the small 

Veblen ordinal, which is also the ordinal type of a certain ordering of rooted trees (Jervell 2005). 

 

This notation is truly amazing! The introduction of the single backslash got me to ε0, the double 

backslash got me to φ(ω, 0), the single backslash within a backslash array got me to φ(ε0, 0), and 

now, the nested backslash array has blasted me right up to Γ0. What next? Nested forward slash 

arrays, nested third level slash arrays, even the slash level itself being represented by nested slash 

level arrays! I aim to reach the small Veblen ordinal and beyond, in Part II of Beyond Bird’s Nested 

Arrays. 

 

The number 

 N = {3, 3 [1 / 2] 2} 

is big enough, but can you imagine for a moment how huge the number 

 {3, 3, 2 [1 / 2] 2} = {3, N [1 / 2] 2} 

is, bearing in mind that when the array is written out in full with entries of 3’s and separator arrays we 

have only to reduce the number in the third entry by one for the second entry to contain a number so 

large that it represents a copy of the entire array with the only change being that its second entry has 

been reduced by one (Rule M7)? 

 

If there are more than  {3, N [1 / 2] 2}  subatomic particles in the entire multiverse or hyperuniverse 

then there must truly be an infinite number of them! 
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