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Abstract

I show stable, localized, single and multi-spot patterns of three classes – stationary, moving, and rotating – that
exist within a limited range of parameter values in the two-dimensional Gray-Scott reaction-diffusion model with σ =
Du/Dv = 2. These patterns exist in domains of any size, and appear to derive their stability from a constructive
reinforcement effect of the standing waves that surround any feature. There are several common elements – including
a spot that behaves as a quasiparticle, a U-shaped stripe, and a ring or annulus, or a portion thereof – which combine
to form a great variety of stable structures. These patterns interact with each other in a variety of ways. There are
similarities to other reaction-diffusion systems and to physical experiments; I offer several suggestions for further research.
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1. Introduction

The Gray-Scott model [2] is a widely-studied model of a
pair of reactions involving cubic autocatalysis. It has been
applied in reaction-diffusion models in one [9, 10, 16, 17,
20], two [5, 16, 19, 22, 25] and three [21, 24] dimensions.
Widely-known results include the existence of stable single
spots, self-replication of spots, spontaneous formation of
stripes and hexagonal arrays of spots, and Turing patterns
[9]. Findings that show a lack of moving stable patterns,
e.g. [10] apply only in 1-D or a limited region of the 2-
D system parameter space ([16] p. 81 and [19] p. 3).
[19] shows existence of stable multi-spot patterns within a
finite domain.

The model equations are:

∂u

∂t
= Du∇2u− uv2 + F (1− u),

∂v

∂t
= Dv∇2v + uv2 − (F + k)v.

(1)

This paper concerns the two-dimensional case with peri-
odic boundary conditions. I use similar terminology and
symbols to those in [5]: u and v are the concentrations
of two reactants U and V , normalized to dimensionless
units. Parameters F and k represent the feed rate and
removal rate of the reactants in the original homogeneous
continuously-stirred tank reactor model; in diffusion sys-
tems they are typically the rates at which U and V perme-
ate through a membrane separating a homogeneous sup-
ply from the gel in which the patterned reactions occur
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[6]. Du and Dv are the diffusion rates of the two reactants
through the gel or other medium; considered together as a
ratio σ = Du/Dv, they constitute a third parameter that
determines certain characteristics of the parameter space
[9]. In this paper, Du = 2× 10−5 and Dv = 10−5. I refer
to the dimensionless units of length and time by lu and tu
respectively.

2. Methods

I used numerical simulation similar to that of Pearson
[5] (discrete Euler forward integration, also called forward-
time centered-space [4]). All figures shown here were pro-
duced with a 256×256 grid, with ∆x = 1/143 lu represent-
ing a system size of 1.79 lu × 1.79 lu, periodic boundary
conditions, and ∆t = 1/2 tu.

To verify the results, many critical measurements were
repeated. In these tests, the grid resolution ∆x, time step
∆t, and stability index ∆t/(∆x)2 (the variable compo-
nent of the Courant condition, see [4, 9]) were each de-
creased in steps of

√
2, 2
√

2 and
√

2 respectively. The
finest resolution used was ∆x = 1/572 lu,∆t = 1/128 tu
with double-precision arithmetic. These tests showed no
qualitative difference in the results, but did enable more
accurate determination of certain measurements. All phe-
nomena reported here appear at the grid resolutions of [5],
∆x = 1/102 lu,∆t = 1 tu, with single-precision arithmetic.
A few grid effects are apparent at this lower resolution, for
example the two-spot pattern in figure 4a reorients to a di-
agonal alignment. Such effects diminish sharply at higher
grid resolutions.

The initial state was created in several ways. Most re-
sults were produced by starting with a background level
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of u and v set to a homogeneous state computed from F
and k. There is always a stable state (uh1 = 1, vh1 = 0),
sometimes called the “red state” [5, 8, 9]. For (F, k) suffi-
ciently small there are two other homogeneous states, one
of which can be stable (called the “blue state”, due to
the color of the pH indicator bromothymol blue the lab-
oratory experiments of [6]). Transforming the variables
and units from Muratov and Osipov[16], the third homo-
geneous state (uh3, vh3) exists when k < (

√
F − 2F )/2,

with u and v given by

uh3 =
A−
√
A2 − 4

2A
, vh3 =

√
F (A+

√
A2 − 4)

2
(2)

where A is
√
F/(F + k). Starting with a grid filled with

these values of u and v or with (u = 0, v = 1), a number of
rectangles were added whose width, height, locations, and
number were determined randomly, and then filled with
random levels of u and v. For most tests, these rectan-
gles ranged from 5× 10−3 lu2 to 4× 10−2 lu2 in area, and
the frequency of occurrence of any given size rectangle was
inversely proportional to its area. Density of these rect-
angles ranged anywhere from 1 to 40 per lu2. A typical
example is shown in figure 1.

A repeatable pseudo-random algorithm was used to
generate all starting patterns, and the initial seed values
saved so the same simulation sequence could be reproduced
at will [11]. The simulation was run for anywhere from 105

to 5× 108 tu, as needed for the phenomena under test. A
complete survey of the parameter space in figure 2 was
performed at intervals of 0.02 in k and 0.04 in F ; many
starting patterns were tried at each parameter value com-
bination. The interested reader can find a gallery of images
online at [27].

Although all of the patterns shown here arose naturally
from such initial random states, a number of techniques
were used to make exploration and discovery more prac-
tical: Selectively removing unwanted patterns by setting
portions of the grid to the homogeneous state; combin-
ing parts of patterns to create others; changing parameter
values; moving small parts of the grid to test pattern in-
tegrity; then continuing the simulation after making any
of these changes.

Because of their stability, each type π pattern natu-
rally evolves from any starting pattern that superficially
resembles it, provided the dimensions and levels of u and
v are approximately correct.

I found it exceptionally useful to visualize u and ∂u/∂t
simultaneously via appropriate color mappings, with the
latter greatly amplified as in figure 4b. An interactive sim-
ulation tool was essential for the discovery of stable moving
patterns “in the wild”. Most work was performed on an
8-core Xeon workstation; verification tests were also per-
formed on a PowerPC workstation. The simulation was
implemented in C, divided into anywhere from 2 to 16 ex-
ecution threads via pthreads. The data set was partitioned
in one dimension only (stripes, each overlapping with two

neighbors); all inter-thread data exchange was via shared
memory.

Additional insight was gained from 1-D and 3-D nu-
merical simulations (the latter from the website at [24]).

3. Principal Findings

I noted all of the pattern types reported in Pearson [5],
including several parameter values at which two or more
of Pearson’s types coexist; many examples are exhibited
at [27]. In addition I observed three new pattern types,
illustrated in figure 3 and named ν, ξ and π to extend
Pearson’s classification letters.

Type ν is found throughout a large part of the area
labeled R in [5], bordering on the regions ε, λ, and µ.
Here we have stable spots (called solitons or autosolitons
by others [16, 26]) that do not multiply. These spots
are static only in isolation. Pairs and groups drift apart
from one another, at a rate that diminishes very rapidly
with distance. The velocity of two spots drifting apart in
a sufficiently large and otherwise empty domain is mod-
eled fairly well by an exponentially decaying rate: veloc-
ity c ≈ Ke−rd lu tu−1 where d is inter-spot distance, K
and r constant. For (F = 0.04, k = 0.07) as shown here,
r ≈ 46 lu−1: the spots drift about half as fast with every
added 0.015 lu of inter-spot distance. r increases with k
and with F ; for example, at (F = 0.04, k = 0.072), r ≈ 47;
and at (F = 0.08, k = 0.066), r ≈ 67. Given enough time
and a small domain size, motion ceases with spots roughly
equidistant; such multi-spot patterns are the subject of
[19]. At lower F values, particularly for F < 0.04, spot-like
starting patterns produce spots that oscillate with a char-
acteristic frequency varying slightly with k and F , and a
damping rate that diminishes sharply as (F, k) approaches
the right edge of the type ν region in figure 2. Near this
frontier the stable spot becomes smaller in diameter and
the central peak has (u, v) farther from (1, 0). Also in fig-
ure 2 we see that at higher F values type ν occurs on both
sides of the saddle-node bifurcation line. As Mazin et. al.
found in one dimension [9], at higher F values the red state
overpowers the blue state in a substantial band to the left
of the saddle-node line; however it is not strong enough to
extinguish small spots. For this reason, parameters in this
band support solitons that do not grow to fill the space
with the blue state.

Type ξ is found in a modest-sized area of the parame-
ter space which includes (F = 0.014, k = 0.047) and (F =
0.008, k = 0.033). As shown in figure 2, type ξ appears
on both sides of the saddle-node bifurcation. It also ap-
pears on both sides of the subcritical/supercritical bound-
ary at k = 9/256 ≈ 0.035 (when k < 9/256, the model
without diffusion oscillates indefinitely; see [7] and [9]).
Type ξ patterns very closely resemble the B-Z (Belousov-
Zhabotinsky) reaction in a Petri dish. An initial pattern
containing a traveling wave front with free ends produces
two spiral seeds and usually results in sustained activ-
ity. At some parameter values the waves develop flaws
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similar to the segmented waves shown in [23] (which is
discussing a CDIMA system); these flaws contribute to
the production of more spiral seeds. Occasionally, double
spirals also occur. A self-sustaining population of spiral
seeds is needed to maintain the pattern, and the density
of seeds varies with k and F . The longevity of the pat-
tern is highly dependent on the size of the domain. At
(F = 0.014, k = 0.047), twenty starting patterns like that
in figure 1 (a 1.79 lu×1.79 lu domain) had an average life-
span of 5400 tu before all waves died out. Twenty trials in
a 6.7 lu× 6.7 lu domain with starting patterns of the same
density all lasted longer than 106 tu.

Type π is the most novel and the subject of the rest
of this paper. I found patterns in this category for F
values ranging from 0.04 to 0.09, in a very thin band of k
values; figure 2 shows four representative locations in this
band. The band runs roughly parallel to the saddle-node
and Turing lines, and to the left (lower k values) of both.
It is also at lower k values than the area investigated by
McGough and Riley [22].

In [5] Pearson explored some parameter values near this
area, initializing the system with red state (u = 1, v =
0) and a small central rectangle of (u = 1/2, v = 1/4),
and found that the system evolved to a homogeneous blue
state; these were designated B. Mazin et. al. [9] using
a similar starting pattern in one-dimensional simulations,
explored a greater number of F and k combinations, and
found many for which stable localized structures result;
these were designated L.

At all F values the π band is very narrow in k as com-
pared to its distance from the bifurcation lines. For ex-
ample, when F = 0.06, the saddle-node bifurcation is at
k ≈ 0.06247, the Hopf bifurcation is at k ≈ 0.06245, the
Turing bifurcation is at k ≈ 0.06191, and the range of
valid k values for the object in the lower-left of figure 4a
is 0.06087 ± 0.00001 ≤ k ≤ 0.06098 ± 0.00001. Pearson’s
pattern type ι (see figure 2 in [5]) shares some qualities
with type π. It is in region L of Mazin et. al. [9], but
its lack of solitary spots indicates it is probably slightly
outside the π band.

4. Stability and motion of type π Patterns

Figure 4a shows five patterns at F = 0.06 and k =
0.0609. The three in the upper row are stable non-moving
patterns. Contrast has been exaggerated in the area of
0.40 < u < 0.44 to show the concentric rings or “halos”
that surround all patterns in systems with these parame-
ters. The halos are concentric stationary waves of alter-
nating sign superimposed on the homogeneous state values
(uh3, vh3) in (2). The full range of u and v levels for type
π patterns at F = 0.06, k = 0.0609 is 0.29 < u < 0.86 and
0.01 < v < 0.43.

The other two patterns in figure 4a move to the left, in-
definitely at constant speed; the three-spot pattern moves
at about 1 lu per 8.5 × 106 tu, and the U-shaped pattern
at about 1 lu per 6.2× 104 tu.

All of the patterns in 4a arise frequently from random
starting patterns, and are resilient to noise and other per-
turbations. If any of them is perturbed by shifting half of
the pattern in any direction a distance on the order of 0.02
lu, further simulation results in a return to the canonical
forms shown here.

Figure 4b shows the time derivative of u for the same
five patterns. The motion of the two patterns in the bot-
tom half of the figure is clear.

Figure 4c shows two rotating patterns. Both rotate
clockwise; the four-spot pattern performs one full revolu-
tion in about 1.6×107 tu; the other takes about 1.2×107 tu.
Disruptions to these will cause a momentary change in ro-
tational velocity followed by a return to the normal rota-
tion rate after the spots return to the stable alignment.

Many stripelike patterns like those in figure 4d arise
from random starting patterns; one-ended forms are more
common than the two-ended versions shown here. They
are stable in the central linear section, in the direction per-
pendicular to their length, but are unstable in the other di-
mension. Any deviation from a straight line will increase,
first slowly and then with increasing speed, forming mean-
ders like those of a river in a floodplain. These linear forms
grow at both ends. The top one is the fastest, each end
grows at about 1 lu per 6.7 × 104 tu, slightly slower than
the speed of the U-shaped pattern in figure 4a. The sec-
ond example grows at 1 lu per 1.45×106 tu from each end.
The third example has two spots at each end that make it
grow (at about 1 lu per 2×106 tu); without these spots the
pattern shrinks at each end. When encountering other ob-
jects, these stripelike patterns will change direction, stop
growing, or (frequently in the case of the topmost exam-
ple) break down into some other form, such as separate
parallel stripes.

Systems that contain active growing stripes will usually
grow to fill all available space with spots and stripes, but
the time taken and the final proportion of spots to stripes
is highly variable, and depends on tiny details of the ini-
tial configuration. This is substantially different from the
behavior of stripes at other parameter values in the Gray-
Scott system, whose final density can generally be pre-
dicted from the parameter values alone.

The central portions of the stripelike patterns in fig-
ure 4d suggest a connection with certain one-dimensional
localized structures found by Mazin et. al in [9] at pa-
rameter values in their region L. In my tests I found that
the dimensions and levels of u and v of features in 1-D
simulations were effectively the same as cross-sections of
stripe-like patterns in 2-dimensional simulations when the
same parameter values are used.

5. Variations with small changes to k

The patterns in figure 4a are shown as they appear
when F = 0.06 and k = 0.0609. If k is diminished below
0.06087, the U-shaped moving pattern is no longer viable
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and decays into a single spot. When k < 0.06062 the sin-
gle spot shown in the upper-left of figure 4a is no longer
stable and quickly evolves to the homogeneous state, how-
ever the other three patterns made up of spots continue to
exist. When k is lowered below 0.06060, the patterns in
the top center and lower right vanish, but the triangular
three-spot pattern remains. Below 0.06057 the triangular
pattern vanishes, but a 7-spot arrangement similar to that
in figure 5c is still viable. The 7-spot pattern dies out
when k < 0.06055.

At F = 0.06, k = 0.06090 the 5-spot pattern in fig-
ure 5a is stable and moves to the left slowly. Using this
as the starting pattern, k is increased to 0.06110, and a
spot forms in the center to make the 6-spot pattern in
figure 5b. This pattern is also left-moving and stable. In-
creasing k further to 0.06135, a seventh spot appears (fig-
ure 5c), and motion stops due to the attainment of sym-
metry. Throughout this process the spots shift away from
one another slightly to attain a new steady state, with a
slightly greater inter-spot spacing with each increase in k.

Increasing k to 0.06150, new spots appear on all sides,
quickly growing to produce the uniform hexagonal grid in
figure 5d.

Groups of spots are no longer stable at these rela-
tively high k values – if k is increased more gradually
from 0.06135 to 0.06150 (for example in 15 equal steps
at intervals of 5000 tu), some or all of the spots will have
time to swell into elongated “stripes” of high u. Even
at k = 0.06135 the seven-spot pattern shown in 5c is
barely stable, and groupings of more than 7 spots produce
stripelike patterns.

Considered together, the range of different behaviors
described thus far represents a very wide spectrum of phe-
nomena in the relatively narrow range 0.06055 < k <
0.06150. A similar spectrum is found at higher and lower
F values, although varying in details. For example, the
behavior shown in figure 5d has been observed at several
values of F from 0.046 to 0.0652; at higher F values a
greater change in k is needed to precipitate the growth of
the hexagonal pattern, and it appears that at significantly
higher F the phenomenon cannot be produced at all. The
U-shaped moving pattern has been found to be stable at F
values from 0.0492 to 0.0876, with k varying as illustrated
in figure 2.

At F = 0.06, k = 0.062, the Turing effect is present.
Here, no initial spots are needed to generate a pattern
of spots and/or stripes. As defined by [1] (see also the
introductory section of [9]) Turing patterns arise sponta-
neously from random noise of arbitrarily low initial ampli-
tude, diffusion plays an active role in the destabilization
of the initial state, and a characteristic wavelength (spot
size and/or stripe width) exists that is independent of the
system size. Figure 5e shows a typical Turing pattern in
the 2-D Gray-Scott system; it was produced from a start-
ing pattern of noise with amplitude 10−4 superimposed
on the blue state (uh3, vh3) from (2). We see similari-
ties, such as hexagonal arrangement of spots and a similar

spot size and spacing, to figure 5d. However, many grain
boundaries, short stripes and other differences in detail
are present. This is typical of patterns throughout the
Turing domain, which at F = 0.06 includes k values in
the range 0.06191 < k < 0.06245 (see [9] for a derivation
of the formulas for these values; k = 0.06245 is the Hopf
bifurcation).

6. Distance interactions and more exotic patterns

Figures 6a and 6b show two points in a simulation in
which k was gradually increased from 0.06058 to 0.06110
over 106 tu. The overall length of the horizontal row of
spots increases with k, and the smaller 3-spot pattern
moves slightly away from it. The entire set of 15 spots
also rotates very slowly as a unit. Similar interactions
between patterns that are not in direct contact are very
common. Decreasing k back to 0.06058 over a similar time
period causes the pattern to return to the state in 6a.

In figure 6c, the U-shaped feature is moving to the
right and slightly downward. It interacts weakly with the
stripelike feature, then more strongly with the triangular
array of spots to the right, and emerges traveling on a
diagonal path towards the upper-right. An animation of
this is available at [28].

In figure 7 are six rotating patterns with a “target”
pattern in the center. The first three are asymmetrical;
each of these transforms into the corresponding symmetri-
cal version; the center shifts a bit in the process. All rotate
clockwise. The solitary spots in the second example are
pushed by the triads. In figure 7b one of the spots is sta-
tionary; after becoming symmetrical as shown in 7e both
spots are moving. Each of these solitary spots remains at
the distance shown, about twice the radius of the bright-
est surrounding halo, from the annulus of the “target” and
from the two closer spots of the triad immediately follow-
ing it.

Figure 7g shows several more moving patterns. All
move to the right. The pattern in the upper-left is an ex-
ample of many variations of the “target” with attached
spots that arise from random starting patterns. Most
remain stable and move; symmetrical forms move on a
straight path and asymmetrical forms move on a curved
path. The “target” by itself is also stable and does not
move. The other three all involve spots that are being
“pushed” ahead of a larger pattern; in all cases the larger
pattern moves faster if the spots in front are removed. The
asymmetrical pattern in the lower-right moves on a curved
path, bending to its right as it moves forward. In the pro-
cess the spot is pushed out of the way, and is left behind
after about the first quarter-turn of the moving pattern’s
path. An animation of this is available at [28].

7. Similarity to Other Systems

Several other authors describe spots with appearance
and interaction similar to the spots shown in this paper.
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Schenk, et. al. [12], studying a two-component cubic
autocatalytic reaction-diffusion system, found parameter
values for which there is a stable spot solution with con-
centric rings of alternating sign and diminishing magni-
tude. For certain parameter values they found that the
spots interact in a similar way to that described in this
paper; they showed some stable multi-spot arrangements
similar to my figure 4a and proposed several more. There
are some differences, for example the pattern in their fig-
ure 5(e) (a four-spot pattern in a Y configuration with un-
equal angles) is not stable in the Gray-Scott system with
parameters (F = 0.06, k = 0.0609), nor at several other
locations I tested throughout the π region. I also found
the pattern in their figure 5(b) (three spots in a straight
line) to be stable, whereas they did not. Such differences
probably result from differences in the spacing and relative
amplitudes of the halos.

In work related to [12], a number of researchers includ-
ing Purwins et. al. [13] have identified and studied “quasi-
particles” that can arrange themselves in a very similar
manner to my figures 4a and 5d. This can be seen clearly
in figures 3 (d), (g), and (h) of the web page article by
Stollenwerk [26]. Note in particular the halos around the
spots in their figure 3(d). These spots arose in laboratory
AC gas plasma discharge experiments that have other fea-
tures reminiscent of patterns seen in the two-dimensional
Gray-Scott system.

Liehr, et. al. in [15], modeling a DC gas plasma dis-
charge experiment, began with a 3-component reaction-
diffusion system, then transformed the equations into a
two-component form with a global integration term. In nu-
merical simulation (see their figures 3 and 5) they achieved
results similar to my figures 5c and 5d. Note the halos and
arrangement of the spots in their patterns. Studying a sim-
ilar 3-component system, Schenk in [14] shows several ex-
amples that include a Zielscheiben-Struktur (target struc-
ture) closely resembling the target patterns in my figure 7.
Spots with halos and similar spot-to-spot interactions are
also shown in that work. In both of these 3-component
systems, a single spot can have an intrinsic velocity and
display particle-like collision behavior in addition to the
static attraction and repulsion effects.

8. Discussion

The single spot in the upper-left of figure 4a has a set
of concentric halos with progressively lower amplitude and
alternating sign. In multi-spot patterns, each spot tends to
be found at a location that coincides with the first positive-
sign halos of neighboring spots. In the growth of hexagonal
arrays, the new spots always appear at such locations.

In figure 4a, the U-shaped moving pattern is of similar
size and shape to the three-spot pattern, and both tend
to return to the canonical dimensions shown here after
distortion or perturbation.

In more distant alignments such as that in figure 6a the
spots are found at distances coinciding with each other’s

second positive-signed surrounding halos. This is also ev-
ident in the five-spot pattern in figure 5a, which remains
as shown when perturbed, rather than changing to a pen-
tagonal ring or some other arrangement.

In several instances (for example figure 4d, all of fig-
ure 6, and figure 7d) we see rows of spots and other roughly
linear features, halos that parallel these features, and mo-
tion and interaction that follows the locations of these
roughly linear halos.

All of the foregoing suggest that areas of high u and low
v produce a pattern of surrounding standing waves, and
that these standing waves combine in a nearly linear way
to produce an effect of constructive and destructive inter-
ference, causing spots and other features to drift towards a
preferred alignment. A similar explanation exists for spot
interactions in the reaction-diffusion system of [12]. Ana-
lytical research is needed to establish a basis for this theory
for the Gray-Scott model equations, or another explana-
tion that can account for the observed phenomena. Inas-
much as similar effects are observed in the 1-dimensional
system, analytical work can probably begin there.

There is much opportunity for further research by nu-
merical simulation, including rigorous statistical analysis
to establish the degree of stability of the patterns in re-
sponse to varying types and levels of perturbation. The
majority of the present results are at a single point in the
parameter space; there is a likelihood that changing F and
σ = Du/Dv will yield new discoveries.

The superficial similarity (spot shape and “halos” and
target patterns) and behavior (spots condensing into a
bound multi-spot state similar to “molecules”) in gas plas-
ma experiments, combined with the successful modeling
(e.g. by [15]) of these experiments by a reaction-diffusion
system in numerical simulation, strongly suggest research
to identify more connections between the present work and
the gas discharge systems.

Concerning the moving stable structures, there are sev-
eral well-studied reaction-diffusion system models, includ-
ing the Brusselator model with diffusion, the three-com-
ponent system of [15], and the Oregonator model of the
B-Z reaction [18]; all sharing many or most of the features
of the Gray-Scott system (stripes, spots, multiple homoge-
neous stable states, mixed-mode patterns, ability to pro-
duce Turing patterns, and varying types of movement and
interaction at various parameter values). Because of these
many shared traits, it seems likely that some of these other
systems can also produce stable moving localized patterns
and other complex phenomena like those described in the
present paper. If such phenomena exist, they likely involve
parameter values that have not been thoroughly explored,
or may be confined to a very narrow region of the param-
eter space.

Finally, this author notes that the great diversity of
patterns and types of interaction displayed by the Gray-
Scott system at these specific parameter values, combined
with the inherent stability of these patterns, clearly places
this system in Wolfram’s class 4 (complex localized struc-
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tures, sometimes long-lived) [3] that characterizes certain
discrete cellular automata that have been shown to be ca-
pable of universal computation. Constructing large sys-
tems of interacting patterns presents several challenges for
long-term stability, because most interactions cause each
interacting part to shift. However, a starting pattern con-
taining an infinite array of elements, each of which is only
used a small number of times, would appear promising.
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(a) start (b) t = 32 tu

(c) t = 120 tu (d) t = 480 tu

Figure 1: Starting pattern used to generate figure 3c.
In the first image, each rectangle has a randomly cho-
sen u and v between 0 and 1, and the background is
(u, v) ≈ (0.4201, 0.2878). Coloring is the same as in fig-
ure 3. The exaggerated contrast makes many u values
completely black or white.
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Figure 2: Parameter values that produce pattern types ν,
ξ and π. The solid curve is the saddle-node bifurcation,
the dashed curve is the Hopf bifurcation, and the dotted
curve is the Turing instability threshold. The area around
(F = 0.06, k = 0.0609) is indicated by [π].

(a) F = 0.040, k = 0.070 (b) F = 0.014, k = 0.047

(c) F = 0.06, k = 0.0609

u < 0.40

0.40 < u < 0.44

0.44 < u

Figure 3: Pattern types ν (inert autosolitons), ξ (B-Z tar-
gets and spirals), and π (stable, stationary and moving lo-
calized patterns). This color key applies to all subsequent
figures.

(a) u (b) ∂u/∂t

(c) rotating patterns (d) stripelike patterns

Figure 4: (a),(b): Comparison of u to its time derivative
for pattern type π. Coloring for all but (b) is the same
as above. In image (b), white represents ∂u/∂t > 2 ×
10−6, shades of gray where |∂u/∂t| < 2× 10−6, and black
otherwise. (c): Two stable rotating patterns. (d): Three
linear growing patterns. (F = 0.06, k = 0.0609) for all
figures; details in section 4.
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(a) k = 0.0609 (b) k = 0.0611

(c) k = 0.06135 (d) k = 0.0615

(e) k = 0.0620

Figure 5: (a) through (d) show the evolution of a starting
pattern as k is raised progressively to three nearby values.
For comparison, (e) shows a Turing pattern arising from
low-level random noise. F = 0.06 for all figures; details in
section 5.

(a) k = 0.06058 (b) k = 0.06115

(c) Interaction (before) (d) Interaction (after)

Figure 6: (a),(b): Lattice spacing variation; (c),(d): An
interaction between three patterns. (F = 0.06, k = 0.0609)
except as otherwise noted; details in section 6.

(a) (b) (c)

(d) (e) (f)

(g) rare moving forms

Figure 7: (a)-(c) are precursors to (d)-(f), which are stable
and rotate clockwise. Patterns in (g) move to the right;
the asymmetrical pattern moves on a curved path. Details
in section 6. (F = 0.06, k = 0.0609) for all figures.
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