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1 Abstract

The goal of this paper is to establish and explore the first four of the following
six points which deal with floretions:. ..

e Conditions under which a given floretion leads to a linear recurrence rela-
tion of 4th order or less, in particular the conditions for the generation of
a sequence of integers for static types.

e Static and dynamic identities. With the help of these identities, we will
see that it is nearly possible to automate the finding of simple relation-
ships between Fibonacci, Lucas, and Pell numbers.



e Using Floret’s Cube to make “intelligent” guesses on how to choose base
coefficients.

e Geometrical aspects. Examples: 1. How are the points and line segments
in the above picture (for example) generated and do the discrete, ellipse-
like objects actually represent real conic sections?

e Necklace aspects and prime numbers.

e Types of convergence and Transforms

Floretions can be utilized to generate several types of sequences. Here is an
overview- where the last column refers to whether there are established connec-
tions between a given type and Triangular/Fibonacci/Pell numbers:

| TYyPE NAME | Tr1 / F1B / PELL |
4th Order Linear Recurrence or less (static type) yes
16th Order or less (dynamic type) yes
Necklace yes
Geometric (sum type) unknown
Transforms (force type) yes

Several tools are available to readers of this article:

° , a more powerful version of the Online Mul-
tiplier. If you spot >>> some command anywhere in this paper, that is a
reference to IDLE’s Python command line. The online version of this pro-
gram currently has symbolic multiplication (i.e. variables) disabled as it
uses up too many recourses on the server side.


http://www.fumba.eu/sitelayout/Floretion.html
http://www.fumba.eu/sitelayout/Floretion.html
http://www.strw.leidenuniv.nl/~mathar/public/mathar20100119.pdf
http://www.mrob.com/pub/math/seq-floretion.html

° script for Blender3D which allows floretion curves to be
generated two and three dimensions. Curves which lead to ellipses as in
the top graphic will be discussed in the final chapter.

° , where he demonstrates that
the 16 floretion (positive) basis vectors form a basis for the space of 4 x 4
real matrices.

2 Introduction

2.1 Notation and Definitions

The 16 (positive) floretion basis elements can be written in several notations,
depending on available fonts and suitability. Note that the unit vector e€ is
also written in bold as 1.

Left/Right Notation G <]_ * i 7 PR

kk ] ik Ji jk ki kj
Left/Right Notation i j "k i’ i’ kK
Ascii-Version 74 "ig’ ik’ "5 ik ki TRy

Matrix/Ascii/Python 1E JE KE ET EJ EK II
KK 1J IK JI JK KI KJ

Factor Space Notation [(,1)] [(4,1)] [(k,1)] [(1,4)] [(1,5)] ete.

Accounting for elements with a negative sign, there are 32 group elements in
all. We begin by reviewing basic multiplication in the “left/right” notation.

ec - 1, = 1 -e€ = 1 Note: e€ is the unit vector.
b —
1 -1 = —e€
& —
] - J =—e€€
—~ &

R ud
k -k =—ee
= = e
i k
— & —
J i —k
Sl
ik i
s —
k-j=—1
e
k-i=j


http://wiki.blender.org/index.php/Extensions:Py/Scripts/Manual/Misc/Import_Floretions
http://fumba.eu/sitelayout/mapleEClarkFloretions1.html

e —

1 -k =—7

The set {4 ,+j,+k,+eé} is isomorph to the quaternion group Q. The
— = —

set {+1i,4+j,+k,+e} is also isomorph to the quaternion group. Just as

— = —

before, we have ¢ - j = k, etc. The remaining basis vectors are defined as:

i -4 =1 -1 =i

icj=3-1=ij

— T e e

i -k k-1 =1k

etc.

In other words, if an element is chosen from the set {+ i ,+j,£k,Le€}

- e - —
and a second element from the set {+ i ,+ j,+ k,+e€}, these two elements
commute. Other products follow from the associative law and the above, for
example:

-1 =111
:Z.(Z.Z).]
:’L.(/L.’L).]
=(i-d)-(i-J)
- %k

—
=—k

It turns out that the above set of elements forms a group which is isomorph to
the factor space F = Q x Q/{(1,1),(—1,—1)} (see Acknowledgements section).
Just as we can switch back and forth viewing the elements 1 and I as cither
members of the group {1, i?} or as a basis for the set C of complex numbers,
80 too can we do this with floretion basis vectors. Luckily for our purposes in this
paper, the question of whether we are, in some particular case at hand, viewing
quaternions/floretions as members of a finite group or as basis vectors making
up an algebra is often either irrelevant or immediately clear upon inspection.
Therefore, we shall not be using two sets of different notation for each case.

In this paper, the 16 elements without a negative sign are referred to as the
floretion basis (or base) elements. Other terms which might also be used are
basis vectors or floretion group elements (this includes elements with a negative

sign).



We shall be particularly interested in multiplying elements of the form
— — — — — — —> —> >
X=A1+Bj+Ck+Di+Ej+Fk+Git +Hjj)+1kk
+Jij + Kik + Lji + Mjk + Nki +Okj + Peé
«— “— — — —
= ibase(X) ¢ + jbase(X) j + kbase(X) k + basei(X) ¢ + basej(X) j
- o <« >
+ basek(X) k + ibasei(X) it + jbasej(X)jj + kbasek(X)kk
> Rod o R
+ ibasej(X) ij + ibasek(X) ik + jbasei(X) ji + jbasek(X)jk
+ kbasei(X) ki + kbasej(X)kj + tes(X)eé

Any such element will be called a floretion. It can be shown that, written in
matrix form (see Acknowledgements section), the set of base floretions 7, 7
form a basis for the linear space of 4 x 4 real matrices. For X, X2 X3 to
lead to a sequence of integers in the context to be described, the condition:

“4A,4B,--- ,4P are integers” is necessary but not sufficient. Thus, the only

fractional parts allowed for all base coefficients are {O’ii’ i?ii}' Since

our primary concern in the beginning is to generate integer sequences,
the sections Introduction and Floret’s Cube implicitely assume this
restricted property in all statements which begin “Let X be a flore-
tion”.

The set of all floretions which induce or “generate” integer sequences (under

so-called static conditions- this will become clear shortly) is denoted by Z°°.
1 1 3

In particular, X € Z*° < Vn € N: (4,),(By),... € {O,ii,ig,ii} where

— — — — — — — “— >
X"=A,1i+B,j +Cok +D,i +E,j +F,k+Gpii +H,jj+I,kk+
Jnij + Kyitk + Ly, ji + My jk + Np ki + O, kj + Ppee.

Note that Z°° is not “closed” in the sense that X - Y € Z° does not
necessarily follow from X,Y € Z°°. Interestingly, by Corollary 2.27, if X - Y €
Z>° we can show Y - X € Z° (note: one particular case of this corollary still
relies on a conjecture). Nevertheless, the reader is invited to try and find two
floretions, each in Z°°, for which the product is not in Z°°. This is a nice
warm-up exercise and, even with the Floretion Multiplier, it may take a bit
of guesswork to stumble onto an example. Harder yet, try to find an example
where Vn : X" #£0, X? € Z but X ¢ Z°.

Definition 2.1 Any floretion may be defined as a PYTHON dictionary as fol-
lows:

X =
{7ie): IA), Ije7: JB), )ke7: )C’,
)eij: ’D’, ’ej): 7E), 7ek’: 7F”
7ii): JG), 7jj7: ,H7’ ,kkJ: ,IJ’
7ij,: JJ,, 7ik7: ,K7’ ,ji7: 7L7’



where A, B, C,... are the real coefficients of the 16 basis vectors ie, je, ke,
etc.

The following definitions are fundamental to what follows:

ves(X) = A+B+C+D+E+F+G+H+I+J+K+L+M+N+0+P
jesleft(X) = A+B+C

jesright (X) = D+E+F

jes(X) = A+B+C+D+E+F

les(X) = G+H+I+J+K+L+M+N+0

tes (X) P

and

ibase(X) = A, jbase(X) = B, kbase(X) C
basei(X) = D, basej(X) = E, basek(X) = F
ibasei(X) = G, jbasej(X) = kbasek(X) = I
ibasej(X) = J, ibasek(X)
jbasei(X) = L, jbasek(X)
kbasei(X) = N, kbasej(X)

H,
K
M
0

along with the projection operators VES (= id), JES, LES, TES, JESRIGHT,
JESLEFT, etc.:

VES (X)
JES (X)
{7ie): JA) )je): )B) )keJ: )C)
)ei): ID)’ )ej): )E7, )ekJ: )FJ,
)iii: )), Jjj): 7), )kk): J),
7ij): }7’ }ik): )7’ }ji): 7)’
7jk): 7), Jki): )), ka): )), 7667: EAD)

X

}
LES(X) =
{7ie2: )7’ )jel: )7’ )ke): )7’
7ei): ) Jej): J)’ Jek): )),

7ii): JG;, Jjj): )H)’ )kk): )IJ’
7ij): )J) )ik): )K) )ji): )L)
7jk): )M), ’ki): JN) )kj}: )D), IeeJ: )

by
FAM(X) =



{)iei )), Jje) ), 7ke): 77,
7ei) }7, )ejl. 7, )ek): )J,
7ii) JGI, JJ'J'7 )H) )kk): )IJ’
7ij) )), )ik). )’ )ji): ))’
)J‘k): 7)’ )ki) )’ ka): ) )ee)' P
}
TES(X) =
{7ie) 7), )je) ), ‘ke: ;)’
rei? ;;, ;ej)_ ;’ ek’ : :)’
7ii) )J, 7jj7: J, 7kk7: J),
)ij) 7), )ik): 7’ 7ji): )7’
7J'k): J), )ki): 7), ka): )), Jee): )P)

} = VES(X) - JES(X) - LES(X)
FAMTES(X) = FAM(X) + TES(X)
The function

“ves” adds all the coefficients:

ves (VES (X))
ves (JES(X))

= ves(X)
jes(X)

etc. We define vesseq as the sequence:

vesseq(X) = (ves(X), ves(X"2), ves(X"3), ves(X"4), ...)
jesseq(X) = (jes(X), jes(X"2), jes(X"3), jes(X"4), ...)
lesseq(X) = (les(X), les(X72), les(X"3), les(X"4), ...)
etc.

For future reference, note that
vesseq(X) (n) = ves(X"n)
From the relation

ves(X) = jes(X) + les(X) + tes(X)

we immediately have an identity which relates 4 sequences of real numbers,
namely:

Proposition 2.2 Static Identities
vesseq(X) = jesseq(X) + lesseq(X) + tesseq(X)

Many similar static identities are used. For example, the reader may easily
check that



jesseq(X) = ibaseseq(X) + jbaseseq(X) + kbaseseq(X) +
baseiseq(X) + basejseq(X) + basekseq(X)

In fact, in many cases these 4 sequences are sequences of integers- though
often all terms of a given sequence must first be multiplied by a factor of 2 or
4. A trivial case would be:

vesseq(X) = (1,1,1,1,..)
jesseq(X) = (0.5,0.5,0.5,0.5,)
lesseq(X) = (0.25,0.25,0.25,0.25,)
tesseq(X) = (0.25,0.25,0.25,0.25,)

In this case, the command seqFinder(X) will automatically return integer se-
quences by multiplying jesseq by 2 and lesseq/tesseq by 4:

vesseq(X) = (1,1,1,1,..)
2jesseq(X) = (1,1,1,1,..)
4lesseq(X) = (1,1,1,1,..)
4tesseq(X) (1,1,1,1,..)

Since the definitions of ves, jes, etc. do not depend on the value of the co-
efficients, the relationship ves = jes + les + tes can be referred to as a “static
identity”. This is in contrast to so-called dynamic identities, an example of
which is the following:

Define

VESPOS(X) =
{’ie’: ’0.5(JA|+A)’, ’je’: ’0.5(|B[+B)’, ’ke’: ’0.5(|C|+C)’,
’ei’: 20.5(|ID|+D)’, ’ej’: ’0.5(|EI+E)’, ’ek’: ’0.5(|F|+F)’,
’ii’: ?0.5(IGI+G)’, ’jj’: °0.5(|HI+H)’, ’kk’: ’0.5(|I|+I)’,
’ij’: 20.5(1J1+3)°, ’ik’>: °0.5(|KI+K)’, ’ji’: ’0.5(|L|+L)’,
’jk’: 20.5(CIMI+M)’, *ki’: 0.5(|INI+N)’, ’kj’: ’0.5(|0|+0)’,
’ee’: ’0.5(|P|+P)’

and
VESNEG(X) = X - VESPOS(X)
Keeping with our notation from above, we have

vespos(X) = ves(VESPOS(X))



This leads to the “dynamic” identity:
ves(X) = vespos(X) + vesneg(X)

— — — —
Example: Y =154% —0.755 +0.754% —0.57
ves(Y)= 1.5 - 0.75 + 0.756 - 0.5 = 1

vespos (Y) 1.5 + 0.75 = 2.25
vesneg(Y) -0.75 - 0.5 = -1.25

For any X, either

tespos(X) = 0
or
tesneg(X) = 0

(Why?) Of course, it does not follow from this property that tesposseq(X) or
tesnegseq(X) is the zero sequence.

Often, what will happen is that vesposseq(X) and vesnegseq(X) will be linear
recurrence relations of the same order or higher . Although these sequences al-
ways seem to satisfy a recurrence relation, this is currently only a conjecture.
The order of the recurrence relations can be quite high- usually 6th order or less
but in rare cases up to 16.

Lemma 2.3 If X € Z°° then Vn : dvespos(X™) is an integer (same for jespos,
lespos, ...).

Proof. 4vespos(X™) = 4dibasepos(X™) + 4jbasepos(X™) + - - - 4tespos(X™)
and all the terms on the right side are integers by the definition of Z°°
Conjecture: If X € Z°°, then vesposseq(X) is a linear recurrence relation
of order ?22. (it follows immediately from this this that vesneg(X) has similar
properties).

2.2 Using the Symbolic Multiplier

Let’s look at how some of the above simple identities relate individual sequences.
For this example, we define the floretions ELucl, and fib with the help of the
Floretion Symbolic Multiplier:

10



ELucI =

{’ei’: 7.257, ’ke’: ’’, ’ek’: ’’, ’ej’: ’’, ’kk’: ’.25°, ’kj’: ’.257,
Jki): )), 7ii7: )‘257’ 7ee): 7.257’ )ik): 73’ Iijl: 77’ 7ji): 77’ 7jj): 3.257,
'jk’: ?.257, ’je’: ’?, ’ie’: ’.25°}

fib={’ei’: 7), ke : 71:, ek : 7:, ’ej’: J), Tkk . :;’ ;kj;: JJ, ki ;;,
IR RE ;z’ Yee?: ;:’ 1ik? . ;:, ;ij7: z), ;ji;: z), ;jj;: :), ’jk’: );’ ’je’: )_1;,
Yie?: :_1;}

The “seqFinder” command then gives

>>> seqFinder (T)

The first 15 terms of each sequence are as follows:

2jesseq: [-1, -1, -2, -3, -5, -8, -13, -21, -34, -55, -89, -144, -233,

-377, -610]

4jesposseq: [1, O, O, O, O, O, O, O, O, O, O, O, O, 0, O]

4jesnegseq: [-3, -2, -4, -6, -10, -16, -26, -42, -68, -110, -178, -288, -466, -754]
Note the dynamic identity jespos + jesneg = jes

4lesseq: [1, -1, O, -1, -1, -2, -3, -5, -8, -13, -21, -34, -55, -89,

-144]

4lesposseq: [6, 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, 720, 1165, 1885, 3050]
4lesnegseq: [-5, -6, -10, -16, -26, -42, -68, -110, -178, -288, -466, -754, -1220]
Note the dynamic identity lespos + lesneg = les

4tesseq: [1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843,
1364]

lvesseq: [0, O, O, O, O, O, O, O, O, O, O, O, O, O, O]

2vesposseq: [4, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207]
2vesnegseq: [-4, -4, -7, -11, -18, -29, -47, -76, -123, -199, -322, -521, -843]
Note the dynamic identity vespos + vesneg = ves

4jesrightseq: [1, -2, -1, -3, -4, -7, -11, -18, -29, -47, -76, -123,

-199, -322, -521]

4jesrightposseq: [1, O, O, O, O, O, O, O, O, O, O, O, O, O, O]

4jesrightnegseq: [0, -2, -1, -3, -4, -7, -11, -18, -29, -47, -76, -123, -199, -322]
Note the dynamic identity jesrightpos + jesrightneg = jesright

4jesleftseq: [-3, O, -3, -3, -6, -9, -15, -24, -39, -63, -102, -165,
-267, -432, -699]

[snip]

The identity jes + les + tes = ves along with the above results now lead us to
“conjecture”:

11



2xFibonacci(1,1) + Fibonacci(1,-1) = Lucas(1,3)

In this case it is very easy to get more sets of sequences which all generate their
own set of identities, for example by slighty changing the floretions:

>>> T2 = Mult(ELucI,fib2)
Fibonacci(1,1) + Lucas(1,3) = 2*Fibonacci(1,2)

>>> T3 = Mult(EFibI,fib3)
Lucas(1,3) = 2xFibonacci(0,1) + Fibonacci(1,1)

(vespos = jespos + lespos + tespos)
>>> T = Mult(ELucI,fib)
2*Lucas(4,7) = Lucas(3,4) + 5*Fibonacci(1,2)

>>> T2 = Mult(ELucI,fib2)
2*Fibonacci(3,5) = Lucas(1,3) + 02(5,7)

>>> T3 = Mult(EFibI,fib3)
2xFibonacci(2,3) + 02(5,7) + Lucas(1,3) = 2*Fibonacci(5,8)

Of course, a computer does not spit out an entire sequence of numbers, but
only finitely many terms. For example, it may return the numbers (1,2, 3,4, 5,6, - - -

(choose X = 5(7 + yf)) + €¢), but at some point we have to terminate the
program and “guess” that the sequence we see is in fact the natural numbers.
Taking one of the above cases as an example, we wish to use the static identity
jes + les 4 tes = ves to automatically conclude that

2*Fibonacci(1,1) + Fibonacci(1,-1) = Lucas(1,3)

and not to spend time wondering whether “Lucas” really are the Lucas numbers
and “Fibonacci” really are the Fibonacci numbers based on the n terms calcu-
lated. Now, it would always be possible to interpret the above as conjectures
and prove the relations with other methods (ie using generating functions or
simply comparing the first several terms, etc., where the latter method actually
counts as a proof if sufficient initial terms are compared depending on the order
of the recurrence). For static identities, Floret’s Equation (see Basic Properties)
proves that the sequences involved satisfy 4th order linear recurrences.

From a technical viewpoint, however, this does not carry over to dynamic
identities— here, we only have the above conjecture. The reason is not that a
given identity itself may be invalid, but that there is (currently) no direct way to
prove that the sequences being generated really are (4th order or higher) linear
recurrence relations. For example, the identity vespos = jespos+ lespos + tespos
yields the relationship

2xLuc(4,7) = Luc(3,4) + 5*Fib(1,2)

from above, but by taken itself, this is still a conjecture.

12



2.3 Basic Properties

The following can be proved by multiplying out both sides of the equation. As
there are many terms to calculate, this was done with the Symbolic Multiplier.

Proposition 2.4 Floret’s Equation
Any
«— — — — — — > S >
X=Ai+Bj+Ck+Di+Ej+Fk+Gii +Hjj+1kk
+Jij + Kik + Lji + Mjk + Nki +Okj + Peé
“— — — — —
= jbase(X) i + jbase(X) j + kbase(X) k + basei(X) i + basej(X) j
— — e 7
+ basek(X) k + tbasei(X) ii + jbasej(X)jj + kbasek(X)kk
> s > s
+ ibasej(X ) ij + ibasek(X) ik + jbasei( X) ji + jbasek(X) jk
+ kbasei(X) ki + kbasej(X) ky + tes(X)eé
satisfies the following equation:
3-X*=12-P - X3+
(6 - tes(X?) — 24 - P?) - X2+
(32-P3 —24-P-tes(X?) +4-tes(X?)) - X+
(3-tes(X*) — 6 (tes(X?))> — 16 - P - tes(X>) + 48 - P? - tes(X?) — 32 - P*) - ee

Corollary 2.5 For any X, tesseq(X) satisfies a 4th order linear recurrence
sequence.

Proof Use Floret’s Equation along with the property that tes() is a linear func-
tional.

Corollary 2.6 For any X

o If tes(X) = tes(X?) = tes(X?) = tes(X?*) =0, then X™ =0 Vm > 4.

o If tes(X) = tes(X?) = tes(X3) = 0, then X*™ = tes(X*™)e€ Vm > 1.

Example 2.7 For an ezample of tes(X) = tes(X?) = tes(X3) = 0, choose

—
X=1+u

13



Proposition 2.8 If tesseq(X) is a sequence of integers, then

p | tes(XP) — tes(X)P

for all odd primes.

The following lemma is almost trivial to mention, but plays a crucial role in
the proof.

Lemma 2.9 Let G be any group and choose g1, g2, ...9m € G.

Then from (g1)-(g2) -+ (gm) = u where u is the identity element, it follows
that (g2) - -+ - (gm) - (1) =

Proof (g2) -+ - (gm) is the unique inverse of g1 and therefore commutes with
g1 by the definition of a group. q.e.d.

Proof of proposition:

Let p be an odd prime and

— — — — — — —> «— —
X=Ai+Bj+Ck+Di+Ej+Fk+Gii +Hjj+1kk
+Jij + Kik +Lji + Mjk+ Nki +0Okj + Peé

How many terms belong to tes(XP?), i.e. the coefficient of the identity ee
from the expanded product XP.

Apparently, the answer is 16P~! since we have 16 choices from each set
of parenthesis... except the last set (why?). Now, many of those terms will
cancel out and determining which terms have which signs could get extremely
complicated (the LEMMA will be used to get around the problem).

Disregarding signs, any such term may be seen as a string with p letters.

Assume, for example, that -ADDB...ACMP is one of the actual terms from
tes(XP). It follows from the distributive law that rotating this string as a
bracelet to form PADDB...ACM must also be a term in the product. The sign
of this term is now critical to the proof since it could either double or cancel out
the term before rotation. However, since the base vectors ’i, ’j, ... ’ee’ can be
seen as elements of a group (see )
the above lemma applies, and we conclude the sign of this term must likewise
be negative.

So in our running example, we know there must be terms:

ADDB. . . ACMP
PADDB. . .ACM
MPADDB. . .AC,
etc.

14


http://www.strw.leidenuniv.nl/~mathar/public/mathar20100119.pdf

in the expansion of tes(X?) which all have the same (negative) sign. Since
p is prime > 2, the number of such terms must be p (see Wikipedia, Necklace
Proof of Fermat’s Little Theorem and, if you wish, consider why it doesn’t work
for p = 2). Thus, the terms in the expansion of tes(X?) are partioned into
groups and the number of terms in each group is p - with the exception of the
single term tes(X )P, which is subtracted off. qg.e.d.

Note: For p = 3 we have tes(X?):

+3.0PHH +6.0LBD -3.0PFF +3.0PMM +6.0DCN -3.0CCP -6.0GOM +3.0NNP +6.0BMF
-3.0PAA -3.0DPD +6.00EC +6.0KAF +6.0NMJ +6.0HEB -3.0BBP +6.0LK0O -6.0NKH
+6.0JAE -6.0LJI +6.0IGH +3.0PJJ +3.0P00 +1.0PPP +3.0PII +6.0AGD +6.0FCI
+3.0PGG +3.0PLL -3.0EEP +3.0KKP

—

Prop051t10n210 LetX andY = yoz —|—y1j +y2k —|—y31 —|—y4] +y5k

Yo ii +yr ) +yskR + 0] + Y100k + Y11 g +yr2gk +yis ki +yraky + 11588
be any floretions. Then tesseq[X - Y] = tesseqY - X]

Proof

We have
5 15 5 15
tes(X-Y) = =370 gxii + D i 6TiYi = — > i o¥iTi + i g Vit = tes(Y - X)

Define Z = X - (Y - X)) then

tesseq[X - Y](n) = tes((X - Y)™) = tes((X - (Y - X)) . Y) =tes(Z - Y)

= tes(Y - Z) = tes(Y - (X - (Y - X)) = tes((Y - X) - (Y - X)(»=1) =
tesseq[Y - X]|(n)

q.e.d.

Surprisingly perhaps, despite the above lemma, there is still no way in general
to deduce from the above that tes(XY XY) = tes(X2Y?). Thusif X =Y + Z,
then the binomial theorem tes(X™) = 7', (})tes(Y"Z"~") does not hold in
general. It may seem strange that this apparently comes in many cases, along
with the fact that there exist many zero divisors in the space, as a clear advan-
tage! For example, we can view the strings XY XY and X XYY as necklaces
which are “not equivalent under tes” (see Chapter: Necklaces). The property
that there exist zero divisors will result in some necklaces being thrown out. As
a result, rules such as those given for this sequence:

(which equals the Fibonacci numbers for prime
n- thanks to M. Alekseyev and A.Karttunen) will not appear ad hoc, but as a
direct result of the above considerations.

Note that if (a,)nen is a sequence of integers, then the binomial transform
of (an)nen is defined as Yy, (7)an
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In the following theorem, it makes no difference if “tes” is replaced by “ibase”,
ete..

Theorem 2.11 Ifad’ = (1,a9,a1,as9,...) = (1, te
b = (1,bo, b1, ba,...) = (1, tes(X + €€), tes((X + e€)
binomial transform of a’.

,tes(X?), tes(X?),...), then
), tes((X + €€)?),...) is the

V)
—~
b
DN ~—

Proof tes: X — tes(X) is a linear mapping. Moreover, the unit ee commutes
with any X. Therefore,

Sreo (Z)a; => 1o (Z)tes(X") =tes(Y>_1_o (Z)X") = tes((X + €€)") = b/,
q.e.d.

Just for fun: We know that the binomial transform of the Fibonacci numbers is
equal to its bisection. Assume (1,tes(X),tes(X?),tes(X?),...) is the Fibonacci
numbers starting at 1. Then by definition, the bisection of this sequence is
(1,tes(X?2),tes(X?),...). Is there a conflict here between this bit of information
and the above theorem?

Corollary 2.12 For any m € 7Z, tesseq[X] is an integer sequence if and only if
tesseq[ X +m - ‘e€] is as well.

Remark 2.13 Another way to write what we have shown above is
XeZ®e X+tedezZ™

and several somewhat thorny conjectures, etc. to come could be simplified if we
had a generalized version of the above:

— — —
XeZ¥eX+tie€eZeXtjeZe Xt keZ®(..)

-
However, this requires a bit more machinery due to the fact that i does not, in
general, commute with X. The generalized version is stated in Corollary .

Remark 2.14 Here in and in the sequel, we shall misuse notation by identifying
(a,b,c) € R® with a pure quaternion ai + biy_‘ + c? or, as in 2.16, with a pure
floretion aX; + bXs + ¢X3. By “pure floretion”, we mean TES(X) = 0 or,
equivalently, X = JES(X) + LES(X).

Lemma 2.15 Vector Product, Dot Product and Determinant, Pure

Quaternion Version
— — — —
Let (a,b,c), (d,e, f), (g,h,i) € R3 be 3vectors andai +bj +ck,di +ej +
— —

fk, g? + h(j_ + ik . their “pure quaternion” counterparts. Define.

a b
W = d e
g h

St 0
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We have the following properties:

(a, b, ¢)scalar-product (d,e, f) = —tes((a7 + b7 + c?) : (dT + e<j—' + f?))
(a, b, c)vector-product (d, e, f) = JES((a? + b? + CZ) . (dT + 67 + f?))

det(W) = —tes((a’i +b7 +ck)-(di +e5 +fk) (g7
(3)

Proposition 2.16 Floretion Vector Product

For any 2 floretions aX 4+ bY + cZ and dX + eY + fZ where
— — —> — o o o o

XY, 7 € {<z—, jok,i,5,k,d,57,kk, ij, ﬁ ji, jk‘ % k;]} are pairwise
different base ﬂoretwns

IF(X+Y +2)2=TES(X +Y + Z)2), then

(a, b, c)vector-product (d,e, f) = (JES + LES)((aX +bY 4+ ¢Z) - (dX +eY + fZ))
(4)

> <~ s
Example: take X7 = i, X, = ij, X3 = ik.

Proof.

Assume (X +Y + Z)? = TES((X + Y + Z)?). Then (JES + LES)((aX 4+ bY +
c¢Z)-(dX +eY + fZ)) = (JES + LES)((aeXY 4+ bdY X + af XZ + cdZX +
bfYZ + ceZY). Since X, Y and Z are base floretions, we know that either
XY =YX or XY = —YX. Assume XY = Y X, then (X +Y + 2)% =
2XY + ---. Since XY can not be the unit vector and also can not be equal
to £YZ or £X7, we have (X +Y + Z)? # TES((X + Y + Z)?), a contra-
diction. Since JES and LES are (linear) projection operators, it follows that
(JES + LES)((aX +bY +cZ)-(dX+eY +fZ)) = (JES + LES)(((ae—bd) XY )+
(JES + LES)(((af —ed)X Z) + (JES 4+ LES)(((bf — ce)Y Z), q.e.d.

Determinants have the important relationship det(AB) = det(A) - det(B). For
this reason, the following result may be particularly interesting.

Proposition 2.17 Let X1, Xo, X3 be 3 floretions with the property X, = JESLEFT(X;)
and X4, X5, X¢ have the property X; = JESRIGHT(X;).

Then

tes(X1 . X2 . Xg) . tES(X4 . X5 . XG) = tES(Xl . XQ . X5 . X4 . X5 . XG)

Proof. Use the Floretion Symbolic Multiplier.
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Corollary 2.18 Let X1, Xo, X3 be 3 floretions with the property X; = JESLEFT(X)
and X4, X5, X6 have the property X; = JESRIGHT(X;).

Then

tes((X1 - Xo- X3+ X4 - X5 - X¢)?) = tes((X1 - Xo - X3)?) + tes((Xy - X5 - Xg)?)
+ 2t€8(X1 'X2 X3) . tes(X4 . X5 XG)

Determinants have the important relationship det(AB) = det(A) - det(B). For
this reason, the following result may be particularly interesting.

Proposition 2.19 Let X1, Xo, X3 be 3 floretions with the property X, = JESLEFT(X;)
and X4, X5, X6 have the property X; = JESRIGHT(X;).

Then
tes(X1 . X2 . Xg) . tes(X4 . X5 . XG) = tes(X1 . X2 . X3 . X4 . X5 . X6)

Proof. Use the Floretion Symbolic Multiplier.

For several of the following proposition(s), it makes no difference whether X
is a floretion which generates a 2nd, 3rd, or 4th order recurrence relation. In
fact, it is totally independent of the form which X might take. As with static
identities, this is perhaps interesting on a deeper level, for it means that 1st,
2nd, 3rd, or 4th order sequences all have the proposition in common.

Proposition 2.20 “Wave Equation”. In the following, let X and Y be any
floretions.

X = JES(X) = X" = LES(X?") + TES(X*") (5)

X = JES(X) = X"t = JES(X?" ) (6)

X = LES(X) + TES(X) = VYm € N: X™ = LES(X™) + TES(X™) (7)
Also:

JES(X?) = 2JES(X- JES(X)) (8)

Proof. The above statements are all easily shown with the symbolic multi-
plier. For example,

>>>Sub (JES (Mult (X,X)), Add(JES(Mult(X, JES(X))),JES(Mult(X, JES(X)))))

which returns an empty dictionary, proves the last statement.
As there are an infinite number of different floretions which generate Fi-
bonacci numbers or Pell numbers, one might wonder whether it is possible to
— —
generate a 2nd order linear recurrence using “pure” floretions X = Ai +B j +

— — — —
Ck+Di+FEj+FFk. A few simple corollaries to 2.20 demonstrate why this
is not possible.
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Corollary 2.21 X = JES(X) =

tesseq(X) (2n+1) = tes(X"{2n+1})= 0
ibaseseq(X) (2n+2) = ibaseseq(X"{2n+2})= 0

Corollary 2.22 If X = JES(X) and aX +bX? = X3 with aX # 0, then b= 0.

Proof. From X = JES(X) it follows that X2 = LES(X?) + TES(X?) and
X3 = JES(X?). By definition of JES, LES and TES, it follows that bX? = 0.
Assume X2 = 0, then X? = X?. X = 0 and thus aX = 0, a contradition. It
follows that b = 0, q.e.d

Corollary 2.23 JES(X?) = (JES(X))? < X =0

Lemma 2.24

X = JESLEFT(X) + TES(X) =: T
Y = JESRIGHT(Y) + LES(Y) =: IT

IfT and IT = XY = JESRIGHT(X - Y) + LES(X - Y)
(9)

T and IT = Y X = JESRIGHT(Y - X) + LES(Y - X)
(10)
T and IT =JESRIGHT(X - Y) = JESRIGHT(Y - X)
(11)

«— “— — — — — > —
Lemma 2.25 If X =A¢ +Bj +Ck+Di+FEj+Fk+Gii +Hjj+
T o R R L PN . oy 9
Tkk+Jij +Kik+Lji + M jk+N ki +Okj+Peé, then ibase(X?), jbase(X?),
etc. with the exception of tes(X?) can always be written in the form of 2 times

the sum of 4 terms (where each of the 4 terms is in the form of a product of two
different base coefficients of X ).

Proof. Using the Floretion Symbolic Multiplier:

>>> Mult (X,X)
ee +1.0JJ +1.0PP -1.0AA +1.0LL -1.0FF +1.0II +1.0NN
+1.0KK -1.0EE +1.0MM +1.0GG +1.000 -1.0BB +1.0HH -1.0CC -1.0DD

ie -2.0FK -2.0GD -2.0EJ +2.0PA

je -2.0MF +2.0BP -2.0DL -2.0HE

ke +2.0CP -2.0FI -2.0E0 -2.0DN

ei -2.0LB +2.0PD -2.0CN -2.0GA

ej -2.0AJ -2.00C -2.0HB +2.0EP

ek +2.0PF -2.0KA -2.0MB -2.0CI
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ii  +2.0HI -2.00M +2.0DA +2.0PG
jj  -2.0NK +2.0PH +2.0EB +2.0IG
kk +2.0FC -2.0LJ +2.0IP +2.0GH
ij  +2.0MN +2.0AE -2.0LI +2.0JP
ik +2.00L -2.O0HN +2.0KP +2.0AF
ji  +2.0KO +2.0BD -2.0JI +2.0PL
jk  +2.0JN +2.0BF -2.0G0 +2.0MP
ki -2.0KH +2.0MJ +2.ONP +2.0DC
kj  +2.0KL -2.0MG +2.00P +2.0EC

Proposition 2.26 (proof incomplete- so still only a conjecture!) If the frac-
1 .1 3
tional parts of the base coefficients of X are all in the set {0, j:Z, +—, :I:Z} then

2
X € Z°° & 4tesseq(X) is a sequence of integers

Note: base coefficient of X is abbreviated B.C. of X in the proof below
Proof

“=" follows immediately from the definition of the set Z°°.

LL¢7?
Assume X ¢ Z°°. We show 4tesseq(X) is not a sequence of integers

Claim I: Let z; be a B.C.of X (thus, z; = ibase(X) or x; = jbase(X), etc).
If there is an odd number of B.C.’s of X with the property that 0 < [|z;|] <

1
1 (where [|x;|] denotes the fractional part of the absolute value of z;) then
4tesseq(X) is not an integer sequence.

Proof of Claim I: Since the denominators must be powers of two, a B.C.
of X whose fractional part is “greater than zero but less than one-fourth” must
have a denominator which is at least 2% (and an odd numerator). Since there
are an odd number of such basis vectors, the number

5 15
tes(X?) = —Zw? + Zw%
=0 i=6

@
cannot equal zero and its fractional part must be less than or equal to 61

where « is an odd integer. It follows that 4tes(X?) is not an integer. Hence,
4tesseq(X) cannot be a sequence of integers. q.e.d. (Claim I)

Claim II: If there are exactly two B.C.’s 21, z2 of X with the property that
1
0 < [|lzi]] < 1 then 4tesseq(X) is not an integer sequence.

Proof of Claim II: We again examine all the B.C.’s of X?2:
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>>> Mult(X,X)
ee +1.0JJ +1.0PP -1.0AA +1.0LL -1.0FF +1.0II +1.0NN
+1.0KK -1.0EE +1.0MM +1.0GG +1.000 -1.0BB +1.0HH -1.0CC -1.0DD

ie -2.0FK -2.0GD -2.0EJ +2.0PA

je  -2.0MF +2.0BP -2.0DL -2.0HE

ke +2.0CP -2.0FI -2.0E0 -2.0DN

ei -2.0LB +2.0PD -2.0CN -2.0GA

ej -2.0AJ -2.00C -2.0HB +2.0EP

ek +2.0PF -2.0KA -2.0MB -2.0CI

ii  +2.0HI -2.00M +2.0DA +2.0PG

jj  -2.0NK +2.0PH +2.0EB +2.0IG

kk  +2.0FC -2.0LJ +2.0IP +2.0GH

ij  +2.0MN +2.0AE -2.0LI +2.0JP

ik  +2.00L -2.0HN +2.0KP +2.0AF

ji  +2.0KO +2.0BD -2.0JI +2.0PL

jk  +2.0JN +2.0BF -2.0G0 +2.0MP

ki  -2.0KH +2.0MJ +2.0NP +2.0DC

kj +2.0KL -2.0MG +2.00P +2.0EC

The product 4+2z; - x5 appears in at most one of the above terms. Just
for arguments sake, we may assume z; = F and xo = B. Then the product
71 - 79 = F - B appears (twice) in jbasek(X?) = +2.0JN + 2.0BF — 2.0GO +
2.0MP. It follows that there is exactly one basis vector coefficient of X2 (namely

1
jbasek(X?) ) with the property 0 < [|jbasek(X?)|] < 1 Now Claim I applies.

If 21 = A and x5 = B then 4tes(X?) cannot be an integer since in this case
both z; and x5 belong to JES(X) and the terms cannot cancel each other’s
fractional parts out when they appear as a sum of squares in tes(X?) .

Seqfan Question: An “anomoly” occurs here when z; = A and o = H
or 75 = 1. Note that Y2 = 0 with ¥ = 7 + H If [A] = [H], these two
terms do cancel each other’s fractional parts out in tes(X?). At this point
we can construct a floretion which appears to contradict the entire proposition

lee & = Ll - = 7
itself. For example Y = g +45 +4ii + g Then Y2 = — i — j + kk,
V3 = 4% + 1(j_ — FZ} — 4(j_i and Y4 = —€¢. The question in this case is
“how did we get here in the first place?”. Indeed, since the B.C.’s of 4X are
all integers by definition (see introduction), we must have X™ =Y for some
m > 1 and X where the B.C.’s of 4X are all integers to produce a genuine
counterexample in this case. Obviously, setting X = Y (since Y° = Y) does
not pass the condition that the B.C.’s of 4X must be integers.

I see two ways out of the situation: the first, of course, would be to show
that there are no such counterexamples. The second -gulp- would be to change
the proposition itself. Since there are several corollaries which depend on this
proposition, it had better be something minor. Perhaps something like (whether
it is a major or minor change is currently unclear!):
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If the fractional parts of the base coefficients of X are all in the set {0, :i:%, + %,
then X2 € Z*° & 4tesseq(X) is a sequence of integers

g.e.d. (Claim IT)

Claim III: If there are exactly four B.C.’s x1, 2, x3, x4 of X with the prop-

1
erty that 0 < [|z;]] < yi then 4tesseq(X) is not an integer sequence.

Proof of Claim III: Exactly two of the basis vector coeflicients x1, x2, 3, T4
must belong to JES(X) and two must belong to LES(X) (consider tes(X?) to
see why and note that if one of the basis vectors belongs to TES(X) there is
nothing to prove).

Assume the first two belong to JES(X) and the second two to LES(X). If we
look at the basis vectors of X2, we conclude that the product z; - 25 is nowhere
to be found! We are only left with the combinations

® T1-Z3
® 1 T4
® T2-T3
® T2 T4

o I3-1y

If 3 = tes(X) = P or x4 = tes(X) = P there is nothing to prove. If the
above 5 products belong to 5 different basis vectors, we can use Claim I. We
are left to consider what happens when the above products belong to exactly 4
different basis vectors. Can x - z3 and x - z4 belong to the same basis vector?
No (check). The only combinations are that x; - 3 and x5 - 4 belong to one
basis vector or that x; - x4 and x5 - 3 belong to one basis vector. Assume xy - x3
and x5 - x4 belong to one basis vector. Again, if we look at the basis vectors of
X? and take into account that both x; and x5 belong to JES(X), then we see
that there is no such possibility unless either x3 = P or x4 = P. This proves
Claim III.

The next claim should be no surprise: Claim IV: If there are exactly six
1
B.C.’s 21,72, 73,24 of X with the property that 0 < [|z;]] < 1 then 4tesseq(X)
is not an integer sequence.

Proof of Claim IV: Exactly three basis vectors z1,z2, 3 must belong to
JES(X) and three must belong to LES(X). In this case, the products z; - z2,
%o - x3 and x5 - 21 are nowhere to be found in the basis vectors of X?2. Thus, we
are again left with an odd number of final choices...
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q.e.d.

We can now prove the following two corollaries. They follow from the last
proposition and Proposition 2.10:

Corollary 2.27 X -Y € Z*  thenY - X € Z*
Proof. This simple proof is left as an exercise.

This corollary has its own corollary:
Corollary 2.28
“— «— —
XeZXeXtieZ&XtjeZe Xtk eZo...) (12)

Proof. Let X € Z°° and choose m € N. It follows by definition that 4

times each base coefficient of X™ is an integer and a quick inspection reveals
—
that 4 times the base coefficients of X" ¢ must also be integers. Thus,
XeZ®a X G €2
Multiplying out the expression (X + T)m gives 2™ terms of the form
— — —
XX Xi-i-X-4i -X---X-3i-X

If we can show that 4 times the base coefficients of any such term is an integer,
we are finished. With no loss to generality, the same example is used. We show

Ayl

— —
XX Xi-i-X-4i -X---X-4i -XeZ
Since i - i = —e€, we only need show
— —
XX X-X-i -X---X-i -XeZ™®
By Corollary 2.27,

(X XX X-%-XX-9)Xez>

SX (XX X-X-7-X-X-9)ez®
S(X-X-X-X-X-9-X--X)-7 ez2®
X X X-X-X-7 -X--Xez2>

«—

1
X X X-X-X-i - (X--X)eZ™®
—
X X)) (X-X-X-X-X-i)€Z®
@(X...X.X.X.X.X-X)-TGZ‘”
XX XXX -X-XeZ®

The last statement immediately follows from X € Z*° q.e.d.
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3 Floret’s Cube

Laxly stated, with so many possibilities... how do we know which floretions
are the interesting ones? Floret’s Cube can be used to make many educated
guesses in that regard:

EE Floret’s Cube

KI] >{ JI

24



The meaning of the symbols of Floret’s Cube are explained at the end of
this chapter.

3.1 Power Sequences

F=025(II+JJ+ KK + EE)

Theorem 3.1 (Power Sequences)

Let F' = 0.25(ii + jj + kk + ee) If X is any floretion, then tes((Fz)™) =
tes((xF)™) = (ibasei(x)+ jbasej(x) + kbasek(x) + tes(x))” = (v + 7+ 25+
215)" = (tes(Fxz))™. The same results hold for ibasei, jbasej and kbase k,
i.e. tbasei((Fx)") = (x¢ + x7 + 28 + 15)"

Fi; = 0.25(ii — jj — kk + ee) = tes((Fyx)™) = (x6 — x7 — g + 215)"

Fjj = 0.25(—ii + jj — kk + ee) = tes((Fj;x)") = (=6 + 27 — x5 + 215)"

Frr = 0.25(—ii — jj + kk + ee) = tes((Frpx)") = (—x6 — x7 + 28 + 215)"
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o LetG = 0.25(—7—7+j/€+kj), If X is any floretion, then tes((Gx)™) =
(z12 + 214 + 20 + 23)"

— =
o Let Gy =0.25( ¢ + i +jk+kj). If X is any floretion, then tes((Gyx)™) =
(12 + 214 — 20 — 23)"

Outline of proof (one of several possible). Use induction and the proper-
—
ties 0 = (i + jk)F = (j +ki)F = (k +ij)F = (i +kj)F = (j +ik)F =
—
(k +ji)F and iiF = jjF = kkF = F.

Definition 3.2 (o and s operators)
The o operator is defined to "reverse the arrows” of basis vectors:

— — — — — —
oX = basei(X) i + basej(X) j + basek(X) k + ibase(X) ¢ + jbase(X) j + kbase(X) k

> o R d > Rwnd >
+ tbasei(X) it + jbasej(X)jg + kbasek(X)kk + jbasei(X)ij + kbasei(X)ik + ibasej(X) ji

+ kbasej(X) jk + ibasek(X) ki + jbasek(X) kj + tes(X)ee

Define F, = 0.5(ii + jj + kk — ee). A check reveals the interesting property that
o X = F, XF, for any X. It follows directly from symmetry that X € Z*° if and
only if c X € Z°°.

The ¢ operator performs a cyclic operation- all floretion i’s are replaced with
7’s, all j’s replaced with k’s and all k’s replaced with 4’s.

-
7

— — «— — —
¢X =ibase(X) j + jbase(X) k + kbase(X) i + basej(X) j + basej(X) k + basek(X)

o Rd > Rd > <«
+ tbasei(X) jg + jbasej(X)kk + kbasek(X) ii + jbasei(X) jk + kbasei(X) ji + ibasej(X)ky

+ kbasej(X) ki + ibasek(X) ij + jbasek(X) ik + tes(X)eé
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3.2 2nd Order Sequences

— =
E=025(7 + i +ii+jj+kk+ee)

@_@@
@f‘\o

®
©» O

We are getting very close to Fibonacci numbers: if X is a “pure quaternion”

of the form A% + B7 + C?, at least three proofs exist demonstrating that
tesseq[F # X] is at most a second order linear recurrence relation (it is in fact
always a 2nd order linear recurrence relation, regardless of whether X is a pure
quaternion or not).

1. Matrix methods- show that the characteristic equation of FE x X is of de-
gree 2 or less.

2. The “by hand” procedure, below.

3. Using the Floretion Symbolic Calculator

Proposition 3.3 (Pure Quaternions and 2nd Order Recurrence Relations) If
—

X=A%+Bj +C%k and E = .25(i + i +ii+jj+kk+jk+kj+ee), then
a(n)=—A-a(n—1)—B-C-a(n—2) (13)

where a(n) = base(X™) and base(X™) is any base coefficient of X™ (including

“tes”). Proof.
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Use the following “tips”:
— = — =
Define G, = .25(j — j —ik+ ki), G. = .25(k — k —ij + ji),
— = — = — =
Fo=.25(i — i —jk+kj), [, = .25(j — j +ik—ik), Fo = 25(k — k —ij+ji)
— =
Moreover, let G = .25( i + i +jk—+kj) and F = .25(ii + jj + kk + ee) be as in
— =
the power sequence proposition and E = .25( ¢ + i +ii+jj+kk+jk+kj+ee).
«—
If X = xOT + x17 + xo k then the following holds:

FzF, = —aoF (14)
FeFy, = -, F (15)
FzF, = —x,F (16)
GzG = —20G (17)
GzGy = —21G (18)
GzG. = —12G (19)
GG, = —FzFE (20)
Fa(Ez)? = Fa(—zoEx — x129¢€) (21)

Proposition 3.4 The General Case

— — — — —
For any X such that tes(X) =0, 4.e. X =Ai +Bj +Ck +Di +Ej +
hd > <« > > Nwnd R g e <>
Fk+Gii +Hjj+1kk+Jij +Kik +Lji +Mjk+ Nki +Okj, then

a(n) = (~A-D+G+H+I+M+0)-a(n—1)+((A+D—-M—-0)(G+H+I1)+(N+E-B—-K)(J+C—F—-L))-a(n—2)
(22)
where a(n) = base(X™) and base(X™) is any base coefficient of X™ (includ-
ing “tes”). Proof. Use the Floretion Symbolic Multiplier

Explanation of Color-Coded Multiplication on Floret’s Cube: The
segments TE-IK, IK-JK, JK-JE, etc. are all light blue. This is because the
result of multiplying the two ends of a segment are all of the form IE*IK =
-EK, IK*JK = -KE, JK*JE = -EK, etc. "EK” or "KE” means one part white
and one part blue. "EI” or "IE” means one part white and one part red. "EJ”
or ”JE” means one part white and one part green. "KJ” or "JK” means one
part blue and one part green, etc..

There is an arrow on the line segment JK-IK pointing from JK to IK. This
means multiplying JK*IK in that order will not produce an element with a
negative sign. Indeed, JK*IK = EK

If there is no arrow on a segment that means the two ends commute.

If there is negative sign on a segment that means the two ends commute
and multiplying them produces an element with a negative sign. Ex. EI*KI =
KI*EI = -KE
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The two segments are otherwise the same but one has a ”sigma” that means
the ”"swap operator” must be applied to one of them to make them the same.
Ex. IJ*II = EK and JK*IK = KE look the same (apart from the sigma sign)
and sigma(KE) = EK.

3.3 Force Transformations (incomplete)

The idea behind a force transformation is quite simple. What we want do to
is take any sequence (c¢(n)) and transform it relative to a given floretion X.
One of the easiest ways is this: Define Y(0) = X + (¢(0) — ves(X)) * ee and
Y(n+1)=Y(n)+ (¢(n) —ves(Y(n))) x ee. Then we define

(ves(Y(0)), ves(Y(1)), ves(Y(2)), ves(Y(3)),
(jes(Y(0)), jes(Y(1)), jes(Y(2)), jes(Y(3)),
(1es(Y(0)), les(Y(1)), les(Y(2)), les(Y(3)),
(tes(Y(0)), tes(Y(1)), tes(Y(2)), tes(Y(3)),

ves_transform_seq(X, c)
jes_transform_seq(X, ¢)
les_transform_seq(X, c)
tes_transform_seq(X, c)
etc.

What happens now? The reader should check to see that in this case
ves_transformed_seq(X, c)

4

is in fact our original sequence (¢(n))! Hint: “ves” is a linear operator. Looking
at the transformed jes, les, and tes sequences, we find that our former static
identities are still valid. In particular, we have

ves_transform_seq(X, c) = jes_transfor_seq(X, c)
+ les_transform_seq(X, c) + tes_transform_seq(X, c)

Often, the sequence being transformed will be the zero-sequence itself. Here
is an OEIS example sequence . Another example of the sequence

(1,—1,1,—1,...) being transformed is this

One of the neatest things about this is what happens when we work iteratively.

3.4 Necklaces (incomplete)
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4 Structure in Fractional Parts

This section is currently written in an informal style.
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Concerning the original question “Are these really 6 ellipses?” on the top
graphic, it is still a bit unclear. Here is an excerpt from an post of mine last
year:

Since 5 points define a conic section, I plotted the curve "Six ellipses",
switched to edit mode, and chose 5 points at random from one
of the six "ellipses".

This led to the equation:
-67.539x72 + 84.408xy - 67.550y"2 - 521.317x - 817.342 + 325.815y = 0O

The other points also seem to fulfill this equation. For ex, let’s
choose another point on the same "ellipse", say (-4.325, 1.340).
Plugging this in to the above equation gives 0.10 = 0. That seems

very good considering there’s some slight rounding going on.

And speaking of rounding, changing the last point to (-4.325, 1.350)
returns 2.1 = 0... a much bigger error. What is still unclear is what’s
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happening as more and more points on the curve are plotted-
do these points approach a "real ellipse"?

4.1 Algorithms

Nearly all algoritms have one thing in common: given a floretion in the form
— “— — — — — — “— > S e
X=Ai+Bj+Ck+Di+FEj+Fk+Gii +Hjj+I1kk+Jij+Kik +
> > > «—

Lji +Mjk + N ki +Okj + Peé we make use of the sum A —[A] + B — [B] +
C — [C] + ... + P — [P] where [A] denotes the integer part of the number A.
This sum can be used as a type of ”steering wheel”- for example, if it is doubled
and inserted back into the algorithm, ellipses may change their direction, their
eccentricies, or turn into something completely different.

Perhaps one of the best examples for an introduction is this Gerald’s Di-

amonds sequence: . Notice that the sequence was created only using
quaternions. To see what happens when we plot A108618(n) vs. A108618(n+1),
see , where the sequence is currently being used as an OEIS
example.

Next, let’s look at a similar example involving floretions:
Define
— — — — — — — > «— «— —>
X=-514+75—-5bk—-5i+ 7 —-5k+i —kk+.5i5 +.551 —.55k —
P
bSky + ee
Y=X
and
«— — — — «—> > “— «—
Yd=-5¢ +.55 —5¢ +.55 —kk—.5ik —.5jk —.5ki —.5kj’
Note: the values of X and Yd do not change during the following steps.
STEP 1:
Multiply X with Y and set Y equal to this result (Y = X - Y).

Pseudo-JavaCode:

mf = new MultiplyFlorets(X, Y);

System.arraycopy (mf .MultiplyFlorets(), 0, Y, 0, mf.MultiplyFlorets().length);
Result, First iteration:

Y =
- )i + 27j . 7k - i7 + 2j’ - k’ + 27ii’ - 2’kk7 + ’ij’ + 7ji) - ij’ - 7kj’ + ’ee7
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STEP 2:
Multiply Y with Yd, set result equal Y.

Result, First iteration:

Y =

+ .51 - 1.5°j + ’k + .bi’ - 1.5j° + k’ - 2’ii’ + ’kk’ - ’ij’ - .5’ik’ - ’ji’ + .5’jk’
- .5’ki’ + .5’kj’

STEP 3:

Add the fractional parts of each basis vector coefficient from Y, set result
equal to "sum”.

Pseudo-JavaCode:
sum = 0; for (int g = 0; g <= 15; g++) sum = sum + Y[g] - (int) Y[gl;

Note: each Y[g] represents the (real number) coefficient of one of the 16 basis vectors spar

Result, First iteration: sum = 0.5 - .5 + 0.5 - .5 - 0.5 +0.5-0.5+.5=0
STEP 4:
Add the value of ”sum” from STEP 3 to the coefficient of the unit vector

(i.e. 7e”) of Y.

Pseudo-JavaCode: Y[15] = Y[15] + sum;

Result, First iteration:
Y=-.5"j+ .5°k - .56j” + .bk’ - ’ii’ - .5’ij’ - .b’ik’ - .5’ji’ - .B5’ki’

STEP 5:

Set a(n) equal to the coefficient of the unit vector of Y, return to STEP 1
for next iteration.

Result, First iteration: a(1) = 0

The lines below represent the results after iterating the above steps. a(n) is
given by the coefficient of the unit basis vector ”e” at the end of each iteration.
Interestingly, if we change STEP 4 to
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”STEP 4”:

Add *half* the value of ”sum” from STEP 3 to the coefficient of the unit
vector (i.e. 7e”) of Y.

Pseudo-JavaCode: Y[15] = Y[15] + sum/2;

we arrive at an integer sequence which mysteriously alternates (39, -39, 39,
-39) for ever after 821 terms: A117154 OEIS

-0.5’i 1.0°j -0.5’k -0.5i’ 1.0j’ -0.5k’ 1.0’ii’ 0.0’jj’ -1.0°kk’ 0.5’ij’ 0.0’ik’ 0.5’ji’ -0.5’jk’ 0.0’ki’ -0.5’kj’ 1.0e

a(0) =1 (0-th iteration)

0.5’i -1.5’j 1.0’k 0.5i” -1.5j’ 1.0k’ -2.0’ii’ 0.0’jj’ 1.0’kk’ -1.0’ij’ -0.5’ik’ -1.0’ji’ 0.5’jk’ -0.5’ki’ 0.5’kj’ 0.0e

a(1) = 0 (ist iteration)

-1.5’i 3.0°j -1.5’k -1.5i’> 3.0j’ -1.56k’ 3.0’ii’ 0.0’jj’ -3.0°kk’ 1.5’ij’ 0.0’ik’ 1.5°ji’ -1.5’jk’ 0.0’°ki’ -1.5°kj’ -1.0e

a(2) = -1 (2nd iteration)
A126626

1.5%i -2.5°j 1.0°k 1.5i’ -2.5j° 1.0k’ -2.0°ii’ 0.0°jj’ 3.0°kk’ -1.0°ij’ 0.5’ik’ -1.0°ji’ 1.57jk’ 0.5°ki’ 1.5°kj’ 2.0e

-0.5’i 0.0°j 0.5’k -0.5i’ 0.0j’ 0.5k’ -1.0°ii’ 0.0’jj’ -1.0°kk’ -0.5’ij’ -1.0’ik’ -0.5’ji’ -0.5’jk’ -1.0’ki’ -0.5’kj’ -3.0e

-1.5’i 4.5°j -3.0°k -1.5i’ 4.5j’ -3.0k’ 6.0°ii’ 0.0’jj’ -3.0°kk’ 3.0°ij’ 1.5’ik’ 3.0°ji’ -1.5’jk’ 1.5’ki’ -1.5’kj’ 2.0e

4.5%i -10.0°j 5.5°k 4.5i’ -10.0j’ 5.5k’ -11.0’ii’ 0.0°jj’ 9.0°kk’ -5.5’ij’ -1.0’ik’ -5.5’ji’ 4.5’jk’ -1.0°ki’ 4.5°kj’ -1.0e

-6.5’i 13.5’j -7.0°k -6.5i’ 13.5j’ -7.0k’ 14.0’ii’ 0.0’jj’ -13.0°kk’ 7.0°ij’ 0.5’ik’ 7.0’ji’ -6.5’jk’ 0.5’ki’ -6.5’kj’ 2.0e

7.5%i -16.0°j 8.5’k 7.5i’ -16.0j° 8.5k’ -17.0°ii’ 0.0°jj’ 15.0°kk’ -8.5’ij’ -1.0’ik’ -8.5’ji’ 7.57jk’ -1.0°ki’ 7.5°kj’ 1.0e

-9.5’i 18.5’j -9.0’k -9.5i’ 18.5j’ -9.0k’ 18.0°ii’ 0.0’jj’ -19.0°kk’ 9.0°ij’ -0.5’ik’ 9.0°ji’ -9.5’jk’ -0.5’ki’ -9.5°kj’ 0.0e

8.5%i -17.0°j 8.5’k 8.5i’ -17.0j’ 8.5k’ -17.0°ii’ 0.0°jj’ 17.0’kk’ -8.5’ij’ 0.0’ik’ -8.5’ji’ 8.5’jk’ 0.0°ki’ 8.5°kj’ 3.0e

-8.5’i 15.5°j -7.0°k -8.5i’ 15.5j’ -7.0k’ 14.0°ii’ 0.0’jj’ -17.0°kk’ 7.0°ij’ -1.5’ik’ 7.0°ji’ -8.5’jk’ -1.5’ki’ -8.5’kj’ -2.0e

5.57i -10.07j 4.5°k 5.5i’ -10.0j’ 4.5k’ -9.0°ii’ 0.0°jj’ 11.0°kk’ -4.5’ij’ 1.0’ik’ -4.5°ji’ 5.5’jk’ 1.0°ki’ 5.5°kj’ 5.0e

-3.57i 4.57j -1.0’k -3.5i’ 4.5j’ -1.0k’ 2.0°ii’ 0.0’jj’ -7.0°kk’ 1.0°ij’ -2.5’ik’ 1.0°ji’ -3.5’jk’ -2.5’ki’ -3.5°kj’ -4.0e

-1.5’i 5.0°j -3.5’k -1.5i’ 5.0j’ -3.5k’ 7.0°ii’ 0.0°jj’ -3.0°kk’ 3.5°ij’ 2.0°ik’ 3.5’ji’ -1.5’jk’ 2.0’ki’ -1.5’kj’ 3.0e

5.5%i -12.5%j 7.0’k 5.5i’ -12.5j° 7.0k’ -14.0°ii’ 0.0°jj’ 11.0°kk’ -7.0°ij’ -1.5’ik’ -7.0°ji’ 5.5’jk’ -1.5°ki’ 5.5°kj’ -4.0e

-8.5’i 19.0°j -10.5°k -8.5i’ 19.0j’ -10.5k’ 21.0°ii’ 0.0’jj’ -17.0°kk’ 10.5’ij’ 2.0’ik’ 10.5’ji’ -8.5’jk’ 2.0’ki’ -8.5°kj’ 1.0e
12.5°1 -25.5°j 13.0°k 12.5i’ -25.5j° 13.0k’ -26.0°ii’ 0.0°jj’ 25.0°kk’ -13.0°ij’ -0.5’ik’ -13.0°ji’ 12.5’jk’ -0.5'ki’ 12.5°kj’ -4.0e
-13.57i 29.0°j -15.5’k -13.5i’ 29.0j’ -15.5k’ 31.0°ii’ 0.0°jj’ -27.0°kk’ 15.5’ij’ 2.0’ik’ 15.5°ji’ -13.5’jk’ 2.0’ki’ -13.5°kj’ -1.0e
17.5°1 -34.5°j 17.0°k 17.5i’ -34.5j° 17.0k’ -34.0°ii’ 0.0°jj’ 35.0°kk’ -17.0°ij’ 0.5’ik’ -17.0°ji’ 17.5°jk’ 0.5°ki’ 17.5°kj’ -2.0e
-16.5’i 34.0°j -17.5°k -16.5i’ 34.0j’ -17.5k’ 35.0°ii’ 0.0°jj’ -33.0°kk’ 17.5°ij’ 1.0°ik’ 17.5’ji’ -16.5’jk’ 1.0°ki’ -16.5°kj’ -3.0e
18.5°1i -35.5°j 17.0°k 18.5i’ -35.5j’ 17.0k’ -34.0°ii’ 0.0°jj’ 37.0°kk’ -17.0°ij’ 1.5’ik’ -17.0°ji’ 18.5°jk’ 1.5'ki’ 18.5°kj’ 0.0e
-15.57i 31.0°j -15.5’k -15.5i’ 31.0j’ -15.5k’ 31.0°ii’ 0.0’jj’ -31.0°kk’ 15.5’ij’ 0.0’ik’ 15.5’ji’ -15.5’jk’ 0.0’ki’ -15.5’kj’ -5.0e
15.5°1 -28.5°j 13.0°k 15.5i’ -28.5j’ 13.0k’ -26.0°ii’ 0.0°jj’ 31.0°kk’ -13.0°ij’ 2.5%ik’ -13.0°ji’ 15.5’jk’ 2.5'ki’ 15.5’kj’ 2.0e
-10.57i 20.0’j -9.5’k -10.5i’ 20.0j’ -9.5k’ 19.0’ii’ 0.0’jj’ -21.0°kk’ 9.5°ij’ -1.0’ik’ 9.5’ji’ -10.5’jk’ -1.0°ki’ -10.5°kj’ -7.0e
8.5%i -13.5%j 5.0’k 8.5i’ -13.5j’ 5.0k’ -10.0°ii’ 0.0°jj’ 17.0°kk’ -5.0°ij’ 3.5’ik’ -5.0°ji’ 8.5’jk’ 3.5°ki’ 8.5°kj’ 4.0e

-1.5’i 1.0°j 0.5’k -1.5i’ 1.0j’ 0.5k’ -1.0°ii’ 0.0’jj’ -3.0°kk’ -0.5°ij’ -2.0’ik’ -0.5’ji’ -1.5’jk’ -2.0’ki’ -1.5°kj’ -9.0e

-2.5’i 9.5°j -7.0°k -2.5i’ 9.5j’ -7.0k’ 14.0°ii’ 0.0’jj’ -5.0°kk’ 7.0°ij’ 4.5’ik’ 7.0°ji’ -2.5’jk’ 4.5’ki’ -2.5’kj’ 4.0e

11.5°1 -25.0°j 13.5°k 11.5i’ -25.0j’ 13.5k’ -27.0°ii’ 0.0°jj’ 23.0°kk’ -13.5’ij’ -2.0’ik’ -13.57ji’ 11.5’jk’ -2.0°ki’ 11.5°kj’ -7.0e

-15.57i 34.5’j -19.0°k -15.5i’ 34.5j’ -19.0k’ 38.0°ii’ 0.0°jj’ -31.0°kk’ 19.0°ij’ 3.5’ik’ 19.0’ji’ -15.5’jk’ 3.5’ki’ -15.5°kj’ 4.0e
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22.57i -47.0°j 24.5°k 22.5i’ -47.0j° 24.5k’ -49.0°ii’ 0.0°jj’ 45.0°kk’ -24.5’ij’ -2.0’ik’ -24.5’ji’ 22.5’jk’ -2.0°ki’ 22.5°kj’ -5.0e

A117154

A117154 OEIS (see above remark - This sequences is calculated similary, however, STEP 4 has been slightly changed)

-0.5’i 1.0’j -0.5’k -0.5i” 1.0j’ -0.5k’ 1.0’ii’ 0.0’jj’ -1.0°kk’ 0.5’ij’ 0.0’ik’ 0.5’ji’ -0.5’jk’ 0.0’ki’ -0.5’kj’ 1.0e
0.5’i -1.5’j 1.0’k 0.5i” -1.5j’ 1.0k’ -2.0’ii’ 0.0’jj’ 1.0’kk’ -1.0’ij’ -0.5’ik’ -1.0’ji’ 0.5’jk’ -0.5’ki’ 0.5’kj’ 0.0e
-1.5’i 3.0°j -1.5°k -1.5i’ 3.0j’ -1.5k’ 3.0°ii’ 0.0’jj’ -3.0°kk’ 1.5°ij’ 0.0’ik’ 1.5’ji’ -1.5’jk’ 0.0’ki’ -1.5°kj’ 0.0e
1.56’i -3.0°j 1.5’k 1.6i’ -3.0j’ 1.5k’ -3.0’ii’ 0.0’jj’ 3.0’°kk’ -1.5%ij’ 0.0’ik’ -1.5’ji’ 1.5’jk’ 0.0°ki’ 1.5°kj’ 1.0e
-1.5’i 2.5%j -1.0’k -1.5i’> 2.5j’ -1.0k’> 2.0’ii’ 0.0’jj’ -3.0°kk’ 1.0°ij’ -0.5’ik’ 1.0’ji’ -1.5’jk’ -0.5’ki’ -1.5%kj’ -1.0e
0.5’ -2.0’j 1.5’k 0.5i” -2.0j’> 1.5k’ -3.0’ii’ 0.0’jj’ 1.0’kk’ -1.5’ij’ -1.0’ik’ -1.5’ji’ 0.5’jk’ -1.0’ki’ 0.5’kj’ 0.0e
-2.5’i 5.0’j -2.5’k -2.5i’” 5.0j’ -2.5k’ 5.0’ii’ 0.0’jj’ -5.0’kk’ 2.5’ij’ 0.0’ik’ 2.5’ji’ -2.5’jk’ 0.0’ki’ -2.5%kj’ 1.0e
2.5%i -5.5’j 3.0’k 2.5i’ -5.5j’ 3.0k’ -6.0’ii’ 0.0’jj’ 5.0°kk’ -3.0’ij’ -0.5’ik’ -3.0’ji’ 2.5’jk’ -0.5°ki’ 2.5’kj’ 0.0e
-3.56’i 7.0°j -3.5°k -3.5i’ 7.0j’ -3.5k’ 7.0°ii’ 0.0’jj’ -7.0°kk’ 3.5’ij’ 0.0’ik’ 3.5’ji’ -3.5’jk’ 0.0’ki’ -3.5%kj’ 0.0e
3.5’ -7.0°j 3.5°k 3.5i’ -7.0j’ 3.5k’ -7.0’ii’ 0.0’jj’ 7.0°kk’ -3.5’ij’ 0.0’ik’ -3.5’ji’ 3.5’jk’ 0.0’ki’ 3.5%kj’ 1.0e
-3.5’i 6.5’j -3.0’k -3.5i’ 6.5j’ -3.0k’> 6.0’ii’ 0.0’jj’ -7.0’kk’ 3.0°ij’ -0.5’ik’ 3.0’ji’ -3.5’jk’ -0.5’ki’ -3.5%kj’ -1.0e

2.5’ -4.5’j 2.0’k 2.5i” -4.5j’ 2.0k’ -4.0’i

> 0.0’jj’ 5.0°kk’ -2.0’ij’ 0.5%ik’ -2.0’ji’ 2.5’jk’ 0.5’ki’ 2.5%kj’ 2.0e

-1.5’i 2.0’j -0.5’k -1.5i’” 2.0j’ -0.5k’ 1.0’

0.0’jj’ -3.0’kk’ 0.5%ij’ -1.0’ik’> 0.5’j

> -1.57jk’ -1.0°ki’ -1.5’kj’ -2.0e
-0.5’i 2.0°j -1.5’k -0.5i’ 2.0j’ -1.5k’ 3.0°ii’ 0.0’jj’ -1.0°kk’ 1.5°ij’ 1.0’ik’ 1.5’ji’ -0.5’jk’ 1.0°ki’ -0.5%kj’ 1.0e
2.5’ -5.5°j 3.0’k 2.5i’ -5.5j’ 3.0k’ -6.0’ii’ 0.0°jj’ 5.0’kk’ -3.0’ij’ -0.5’ik’ -3.0°ji’ 2.5’jk’ -0.5’ki’ 2.5’kj’ -2.0e
-3.5’i 8.0°j -4.5’k -3.5i’ 8.0j’ -4.5k’ 9.0’ii’ 0.0’jj’ -7.0°kk’ 4.5°ij’ 1.0’ik’ 4.5’ji’ -3.5’jk’ 1.0’ki’ -3.5’kj’ 0.0e
5.5’ -11.0’j 5.5’k 5.5i” -11.0j’ 5.5k’ -11.0’ii’ 0.0’jj’ 11.0°kk’ -5.5’ij’ 0.0’ik’ -5.5’ji’ 5.5’jk’ 0.0’ki’ 5.5’kj’ -1.0e
-5.5’i 11.5’j -6.0’k -5.5i’” 11.5j’ -6.0k’ 12.0’ii’ 0.0’jj’ -11.0°kk’ 6.0’ij’ 0.5’ik’ 6.0’ji’ -5.5’jk’ 0.5’ki’ -5.5’kj’ 0.0e

6.5’ -13.0°j 6.5k 6.5i’ -13.0j’ 6.5k’ -13.0’ii’ 0.0’jj’ 13.0°kk’ -6.5’ij’ 0.0’ik’ -6.5’ji’ 6.5’jk’ 0.0°ki’ 6.5’kj’ 0.0e
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5 Additional Documentation When Using the
Floretion Symbolic Multiplier

Below Epowl and fib are predefined (Python) floretion dictionaries. T is de-
fined as the product of Epowl and fib.

>>> T = Mult(EpowI, fib)

ee +0.25
ie -0.25
je -0.5

ke

ei +0.25
e]

ek

ii -0.25
3] -0.25
kk +0.25
ij +0.5

ik +0.5

ji -0.5

jk -0.25
ki

kj +0.25

>>> seqFinder(T)

The first 10 terms of each sequence are as follows:
2jesseq: [-1, -2, -3, -5, -8, -13, -21, -34, -55, -89]
This sequence has no dynamic qualities.

4lesseq: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

4lesposseq: [5, 7, 12, 19, 31, 50, 81, 131, 212, 343]
2lesnegseq: [-2, -3, -5, -8, -13, -21, -34, -55, -89, -144]
Note the dynamic identity lespos + lesneg = les

4tesseq: [1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
This sequence has no dynamic qualities.

ivesseq: [0, O, O, O, O, O, O, O, 0, O]
2vesposseq: [3, 5, 8, 13, 21, 34, 55, 89, 144, 233]
2vesnegseq: [-3, -5, -8, -13, -21, -34, -55, -89, -144, -233]

Note the dynamic identity vespos + vesneg = ves

The above implies that
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0.26%[1, 1, 2, 3, 5, 8, 13, 21, 34, 55] =
0.25%[5, 7, 12, 19, 31, 50, 81, 131, 212, 343] +
0.5x[-2, -3, -5, -8, -13, -21, -34, -55, -89, -144]

In the case of ves, it is not hard to imagine an egg being cracked open and/or
getting something for nothing when two dynamic identities add to the zero se-
quence!

To see which basis vectors are associated with jesleft, for example, use the
command

>>> returnsetofvectors("jesleft")
[’ke’, ;je;’ ’ie’]

>>> returnsetofvectors("ibase")
[’ie’]

>>> returnsetofvectors("basei")
[’ei’]

This means that jesleft sums up over the coefficients of the basis vectors [ke’,

SRR

'je’, ’ie’], namely: A, B, C. Now, a quick glance confirms that
jesleft(X) + jesright(X) = jes(X)

The command testequality(listofstringsl, listofstrings2) can be used
here:

>>> testequality(["jesright","jesleft"], ["jes"])
True

>>> testequality(["tes","les", "jes"], ["ves"])
True

The function is particularly handy when creating your own identities or when
checking lengthier ones. If you wish to create your own identity- say

myown = ibase + basej

it is merely necessary to look for the dictionary labled ”staticidentities” in the
original code and add the string ”myown” to the list next to the vectors ’ie’
and ’ej’. Some useful pre-defined identities are given below.

>>> testequality(["emI", "emJ", "emK"],

[llfamll’ llfamll’ Ilfam"’ lltesll’ Iltesll, lltesll’ lljesll, "miX"])

True

This refers to the identity : eml + emJ + emK = 3fam + 3tes + jes + mix
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>>> testequality(["les"], ["fam", "mix"])
True

>>> testequality(["emI"], ["ibase", "basei", "ibasei", "jbasej",
"kbasek", "jbasek", "kbasej", "tes"])
True

>>> testequality(["diaI", "diaJ", "diaK"], ["jes", "fam"])
True

More examples...

>>> seqFinder (T)

(jes + les + tes = ves)
>>> T = Mult(ELucI,fib)
2xFib(1,1) + Fib(1,-1) = Luc(1,3)

>>> T2 = Mult(ELucI,fib2)
Fib(1,1) + Luc(1,3) = 2*Fib(1,2)

>>> T3

= Mult (EFibI,fib3)
Luc(1,3) =

2%Fib(0,1) + Fib(1,1)

(vespos = jespos + lespos + tespos)
>>> T = Mult(ELucI,fib)
2xLuc(4,7) = Luc(3,4) + 5xFib(1,2)

>>> T2 = Mult(ELucI,fib2)
2*%Fib(3,5) = Luc(1,3) + 02(5,7)

>>> T3 = Mult(EFibI,fib3)
2%Fib(2,3) + 02(5,7) + Luc(1,3) = 2xFib(5,8)

(vesneg = jesneg + lesneg + tesneg)
>>> T = Mult(ELucI,fib)

2xLuc(4,7) = 2*Fib(3,5) + 2*Fib(1,2)
-> Luc(4,7) = Fib(3,5) + Fib(1,2)

>>> T2 = Mult(ELucI,fib2)

2%Fib(1,2) + 2*Fib(2,3) = 2%Fib(3,5)
-> Fib(1,2) + Fib(2,3) = Fib(3,5) (not new)
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>>> T = Mult(EpowI,fib)
4xFib(0,1) + 4*Fib(0,1) = 3*Fib(-1,1) + 3*Luc(1,3) - 2%Fib(1,1) - 2%Fib(-1,1)
-> 8*Fib(0,1) = Fib(-1,1) + 3x*Luc(1,3) - 2xFib(1,1)

>>> T3 = Mult(EFibI,fib3)
4xFib(1,1) - 4xFib(1,0) = 3*Luc(1,3) - 3*Luc(1,3) + 4*Fib(0,1) (cancels, nothing new)

jesright + jesleft = jes
>>> T2 = Mult(ELucI,fib2)
3*Fib(0,1) + Luc(2,1) = 2*Fib(1,2)

emJ = emJpos + emJneg
>>> T3 = Mult(EFibI,fib3)
2¥Fib(1,0) = 02(4,5) - 02(2,5)

The first 10 terms of each sequence are as follows:
2jesseq: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

2jesposseq: [2, 3, 5, 8, 13, 21, 34, 55, 89, 144]
1jesnegseq: [-1, -1, -2, -3, -5, -8, -13, -21, -34, -55]
Note the dynamic identity jespos + jesneg = jes

4lesseq: [-1, -1, -2, -3, -5, -8, -13, -21, -34, -55]
4lesposseq: [5, 7, 12, 19, 31, 50, 81, 131, 212, 343]
2lesnegseq: [-3, -4, -7, -11, -18, -29, -47, -76, -123, -199]
Note the dynamic identity lespos + lesneg = les

4tesseq: [1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
This sequence has no dynamic qualities.

lvesseq: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

2vesposseq: [5, 8, 13, 21, 34, 55, 89, 144, 233, 377]
2vesnegseq: [-5, -6, -11, -17, -28, -45, -73, -118, -191, -309]
Note the dynamic identity vespos + vesneg = ves

4jesrightseq: [-1, O, -1, -1, -2, -3, -5, -8, -13, -21]
2jesrightposseq: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
4jesrightnegseq: [-3, -2, -5, -7, -12, -19, -31, -50, -81, -131]
Note the dynamic identity jesrightpos + jesrightneg = jesright

4jesleftseq: [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
2jesleftposseq: [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
4jesleftnegseq: [-1, -2, -3, -5, -8, -13, -21, -34, -55, -89]
Note the dynamic identity jesleftpos + jesleftneg = jesleft
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2mixseq: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

2mixposseq: [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
2mixnegseq: [-1, -1, -2, -3, -5, -8, -13, -21, -34, -55]
Note the dynamic identity mixpos + mixneg = mix

4famseq: [-1, -3, -4, -7, -11, -18, -29, -47, -76, -123]
4famposseq: [3, 3, 6, 9, 15, 24, 39, 63, 102, 165]
2famnegseq: [-2, -3, -5, -8, -13, -21, -34, -55, -89, -144]
Note the dynamic identity fampos + famneg = fam

lemIseq: [0, O, O, O, O, O, O, O, 0, O]

2emIposseq: [3, 4, 7, 11, 18, 29, 47, 76, 123, 199]
2emInegseq: [-3, -4, -7, -11, -18, -29, -47, -76, -123, -199]
Note the dynamic identity emIpos + emIneg = eml

lemJseq: [-1, O, -1, -1, -2, -3, -5, -8, -13, -21]
2emJposseq: [2, 5, 7, 12, 19, 31, 50, 81, 131, 212]
2emJnegseq: [-4, -5, -9, -14, -23, -37, -60, -97, -157, -254]
Note the dynamic identity emJpos + emJneg = emJ

lemKseq: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

2emKposseq: [4, 5, 9, 14, 23, 37, 60, 97, 157, 254]
2emKnegseq: [-2, -3, -5, -8, -13, -21, -34, -55, -89, -144]
Note the dynamic identity emKpos + emKneg = emK

4dialseq: [-5, -5, -10, -15, -25, -40, -65, -105, -170, -275]
This sequence has no dynamic qualities.

4diaJseq: [1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
4diaJposseq: [3, 5, 8, 13, 21, 34, 55, 89, 144, 233]
2diaJnegseq: [-1, -1, -2, -3, -5, -8, -13, -21, -34, -55]
Note the dynamic identity diaJpos + diaJneg = dialJ

4diaKseq: [3, 1, 4, 5, 9, 14, 23, 37, 60, 97]

1diaKposseq: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

4diaKnegseq: [-1, -3, -4, -7, -11, -18, -29, -47, -76, -123]
Note the dynamic identity diaKpos + diaKneg = diakK

2dialtesseq: [-2, -1, -3, -4, -7, -11, -18, -29, -47, -76]
4dialtesposseq: [1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
4dialtesnegseq: [-5, -5, -10, -15, -25, -40, -65, -105, -170, -275]
Note the dynamic identity dialtespos + dialtesneg = dialtes

2diaJtesseq: [1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
1diaJtesposseq: [1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
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2diaJtesnegseq: [-1, -1, -2, -3, -5, -8, -13, -21, -34, -55]
Note the dynamic identity diaJtespos + diaJtesneg = diaJtes

idiaKtesseq: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
4diaKtesposseq: [5, 7, 12, 19, 31, 50, 81, 131, 212, 343]
4diaKtesnegseq: [-1, -3, -4, -7, -11, -18, -29, -47, -76, -123]
Note the dynamic identity diaKtespos + diaKtesneg = diaKtes

6 Acknowledgements and Closing Remarks

It can be said that the current paper is the result of “7 years of casual note
taking in my free time”. Fortunately, there has been encouragement from others
concerning this work and many useful tips along the way. Special thanks to
Prof. Irene Pieper-Seier for her initial proofreading in 2002 and pointing out
that the found group of 32 elements was isomorph to the Quaternion Factor
Space F = Q x 9/{(1,1),(—1,-1)}. Thanks also to Prof. Edwin Clark for
providing a Maple worksheet to the author which clarified how the 16 (positive)
base elements span the algebra of 4 x 4 matrices and that this algebra is the

of H with H (where H is the algebra of quaternions). Note: not
all basis vectors are shown, below:

0 -1 0 O 0 1.0 O
1 0 0 O -1 0 0 O
IE = 0 0 0 -1 EI= 0 0 0 -1
0 0 1 0 0 01 0
0 0 -1 0 0 0 10
0 0 0 1 0 0 01
TE = 1 0 0 0 EJ = -1 0 0 0
0 -1 0 O 0 -1 0 0
00 0 -1 0 0 0 1
00 -1 0 0 0 -1 0
KE= 01 0 O EK = 0 1 0 O
10 0 O -1 0 0 0
10 0 0
01 0 0
EE = 0 010
0 0 01
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