
HyperCalc

Originally created by Robert P. Munafo.
Ported to JavaScript by Kenny TM∼

Go ahead – just try to make me overflow!

Contents

1 Introducing HyperCalc 3
1.1 So what is HyperCalc? . 3
1.2 Representing Numbers in HyperCalc 4

2 History of HyperCalc 6
2.1 Revision history of HyperCalc PalmPilot 6
2.2 Revision history of HyperCalc Perl 7
2.3 Revision history of HyperCalc JavaScript 10

3 Using HyperCalc 12
3.1 Evaluating Simple Expressions 12
3.2 Big Numbers in HyperCalc . 14

3.2.1 Entering Big Numbers . 14
3.2.2 Displaying Big Numbers 15

3.3 I/O History . 15
3.3.1 Output History . 15
3.3.2 Input History . 15

3.4 Variables and Functions . 16
3.4.1 Custom Variables . 16
3.4.2 Custom Functions . 17
3.4.3 Variables vs. Functions 18
3.4.4 Reviewing Custom Variables and Functions 18
3.4.5 Removing Custom Variables and Functions 18

3.5 Miscellaneous . 19

4 Troubleshooting 20
4.1 Non-Intuitive Results when Working with Huge Numbers . . . 20
4.2 FAQ . 21

4.2.1 Why I can’t use x as the multiplication sign? 21
4.2.2 Why I can’t use c or r as input/output history recall? . . 22
4.2.3 I entered !! for re-evaluating the last statement but the

screen was blanked. 22
4.2.4 Why 7 / 100 * 100 does not give 7? 22
4.2.5 Can I store my custom variables/functions in a file? . . . 22

1

4.2.6 Can I redistribute/modify HyperCalc? 22
4.2.7 What if I still have questions? 23

5 GNU General Public License 24
5.1 How to Apply These Terms to Your New Programs 6

2

Chapter 1

Introducing HyperCalc

Which is bigger: 2786! or
(
2786
)
!? Most calculators can’t even give the value of

2786 or of 86!.

With HyperCalc you can see that 2786 is 1.25107 . . . × 10123, and 86! is
2.422709 . . . × 10130. Some calculators can handle that – the current record-
holder is AlCalc for the Pilot, which goes as high as 1032767 and can handle
9274! (9274 factorial).

But no other calculator can tell you that(
2786
)
! = 101.534607...×10125

or that
2786! = 103.467778...×10130

(in other words, the first has over 10125 digits and the second, with over 10130

digits is “just a little bit” larger.)

1.1 So what is HyperCalc ?

HyperCalcis an open-source interpreted calculator program designed to calcu-
late extremely large numbers (such as your phone number raised to the power
of the factorial of the Federal budget deficit) without overflowing.

It does this by using a modified form of the level-index number system with
a radix of 10300.

3

Year Model Overflow
1973 TI SR-50 10100

1980 Sharp EL-5100 10100

1989 Casio fx-7500G 10100

? Casio fx-115D 10100

1995 Casio CFX-9800G 10100

1997 Pilot AlCalc 1032768

1998 Casio fx-260 10100

1998 Sharp EL-531L 10100

1998 TI-85 101000

1998 TI-92 101000

1999 TI-89 101000

2003 Mathematica 5 for Windows 1.92022 × 10646456887

1998 HyperCalc PalmPilot (for Palm) 32768ˆˆ(300)
1999 HyperCalc Perl (for UNIX) 1010ˆˆ(300)
2004 HyperCalc JavaScript (for WWW) (1.79769 × 10308)ˆˆ(300)

Table 1.1: Performance statistics for other calculators

1.2 Representing Numbers in HyperCalc

The overflow value for HyperCalcis so large it can’t be represented in the
standard way. If we use HyperCalc’s internal “PT” (Power Tower) format it’s
easy.

HyperCalc handles numbers with absolute value greater than the range sup-
ported by the floating point library by storing the numbers in many different
formats. When the numbers are within normal floating-point range (less than
10300) they are stored in the normal floating-point format. Between 10300 and
1010300

they are stored as (common) logarithms, and Logarithmic Number Sys-
tem (LNS) algorithms are used. When the logarithm gets too big to store as a
floating point number, the logarithm is taken again, and so on. An integer field
is used to keep track of how many times the logarithm has been taken. Table
1.2 shows some examples:

Each time we transition from the top of one PT range to the bottom of the
next, about 2.5 digits of precision are lost as the information formerly stored
in the exponent has to be absorbed by the mantissa. Then, as we proceed up
the range digits are gradually gained back until we reach the top of the range
and we once again have a 2.5 digit exponent. So, for example at the top of
the PT = 0 range the values are things like 1.23456789012345 × 10299, and there
are 53 binary digits of precision in the mantissa, or almost 16 decimal digits.
Then we cross over into the PT-1 range and store the logarithm instead, which
becomes a value like 301.456789012345 – we still have 15 or more digits to work

4

PT-Notation PT Value Representation
0ˆˆ(1.0) 0 1.0 1.0

0ˆˆ
(
3.45 × 1010

)
0 3.45 × 1010 3.45 × 1010

0ˆˆ
(
1.0 × 10299

)
0 1.0 × 10299 1.0 × 10299

0ˆˆ
(
9.9 × 10299

)
0 9.9 × 10299 9.9 × 10299

1ˆˆ(300) 1 300 10300

1ˆˆ(300.301) 1 300.301 2 × 10300

1ˆˆ(301) 1 301 10301

1ˆˆ(834.173) 1 834.173 1.489 × 10834

2ˆˆ(79) 2 79 101079

3ˆˆ(34) 3 34 10101034

254ˆˆ
(
1010
)

254 1010 101010.
. .

10

︸ ︷︷ ︸
256

32767ˆˆ
(
10300

)
32767 10300 101010.

. .
10300

︸ ︷︷ ︸
32768 tens

(To read about even larger numbers, go to
www.mrob.com and click on “Large Numbers”.)

Table 1.2: Examples of PT-Notation

with, but the first three correspond to the exponent of the number and there are
only 12 or 13 digits left for expressing the mantissa. Of course as we keep going
up we get to values like 123456.789012345 (which represents 6.15× 10123456) we
lose even more mantissa digits to exponent, but eventually we’ll get to values
like 123456789012345000000 = 1.2345 . . . × 1020, which represents 101.2345...×1020

and as we go on up to even bigger numbers we see that since the exponent
needs to be printed it once again holds information equivalent to 2.5 digits.

This entire issue of variable number of digits and the associated problems
it causes with non-intuitive round-off performance would be avoided if one
used a “natural” PT storage format, where e (base of natural logarithm) is the
base and the representation is such that the floating point value is always in
the inteval [1, e]. So, for example, the number 143 would be represented as
2ˆˆ(1.601979 . . .) because ee1.601979...

is 143. Such a format would be unwieldy for
normal calculations, however, because you’d have to keep doing ex and ln x all
over the place when doing simple calculations like 25 + 2.

5

www.mrob.com

Chapter 2

History of HyperCalc

Notice that HyperCalc PalmPilot and HyperCalc Perl are created by Mr. Mu-
nafo, while HyperCalc JavaScript is written by Kenny TM∼.

2.1 Revision history of HyperCalc PalmPilot

Oct 1?th, 1998 Start project from “SampleCalc” example.

Oct 18th, 1998 Fairly complete scientific calculator, except trigonometric func-
tions.

Oct 21st, 1998 Start implementing PT functions, get pt_exp and pt_mulwork-
ing.

Oct 22nd, 1998 Implement addition, subtract, power, common logarithm (base
10), common antilogarithm, and gamma function.

Oct 24th, 1998 Pretty much complete on the PT functions; they even handle in-
finity. Also, add a “tiny” font to print exponents when using the stdFont.

Oct 25th, 1998 Refine the formatting code for PT-1’s and higher so it computes
exactly how many digits of mantissa can be shown. Add some more
buttons, but most not implemented yet. Implement rounding (incredi-
bly complex!). Add inverse trigonometric function, hyperbolic function,
variable definition, and reciprocal keys. (but only reciprocal is imple-
mented).

Oct 26th, 1998 Add the same formatting refinements to PT-0’s, so it can print
contents of memories (which have fewer pixels available). Implement
variable defintion.

6

Oct 28th, 1998 Add hyperbolic functions and inverse trigrinometric functions
(but not inverse hyperbolic functions).

Oct 30th, 1998 Add inverse hyperbolic functions.

Oct 31st, 1998 Put f_ and pt_ routines in their own files. Implement floating-
point square root based on the grammar school algorithm (greatly in-
creases speed of inverse trigonometric functions).

2.2 Revision history of HyperCalc Perl

Jun 10th, 1999 Start writing a simple Perl calculator program using a new con-
cept: expression evaluation via regular expressions (I got the idea while
writing the top100 movie statistics program). Right now it just does
addition and multiplication.

Jul 1st, 1999 Break the addition operator into a separate subroutine add1 (even-
tually all operators will be done this way).

Jul 20th, 1999 Add all the code from the HyperCalc PalmPilot, to eventually
merge and translate into Perl.

Jul 21st, 1999 Parsing routine is fairly complete and now includes nested loop
to handle parentheses. Subroutines for all four operators (+,−,×,÷).
“e” and “%” in an expression represent 2.71828 . . . and previous result,
respectively.

Jul 25th, 1999 Add split and start writing first operator that handles PT types:
p_add, pt_add, pt_addpos.

Jul 27th, 1999

21:25 Do lots of porting work: put all routines in “proper” (Pascal) order;
lots of global replaces to change things like x.pt to $x_pt; replace
Taylor and Newton algorithms with builtin functions where avail-
able; minimum work to get pt_addpos working. It now properly
adds 10300 + 10300 (and gets 1ˆˆ(300.3010299 . . .)).

21:54 pt_add fully works; pt_divworks.

22:35 pt_sub and pt_mul work now. Output formatting handles some
of the special cases to print values like 1ˆˆ(2345.6789) as 4.77 × 102345

rather than as “1 PT 2345.6789”.

27:22 pt_lnworks; parser handles ln() and log().

Jul 28th, 1999

13:33 It now handles exp() and pow(), so I can compute really big values
without lots of repetitious keystrokes.

7

25:?? eval2() now stores all operator results into an array, and stores
the array index into the expression string. This is to avoid numbers
getting converted from strings into floating point and back again,
and that dramatically reduces roundoff error.

Jul 29th, 1999 Start editing all the f_ routines so the primitive floating-point
type can be changed easily later. This involves implementing a minimal
set of “primitives” like f_int, f_le, f_neg, f_mul, etc. and making all the
other f_ routines do all their operations by calling these primitives. Also,
inline constants like “10” are replaced with globals.

Aug 1st, 1999 pt_root and pt_log_n work. All of the f_ routines are “prim-
itivized”, but pt_ routines still need some work. Also added “debug”
command. Put most of f_ primitives inside $f64_prim so they can be
defined and redefined via exec. Create $g_pt_inf to distinguish uses
of infinity in PT field from its uses in VAL field. A few other changes to
support switching VAL primitive precision. Make it auto-promote inlines
like “23E+456”.

Aug 2nd, 1999 Pretty much finished making the pt_ routines call f_.

Aug ?th, 1999 Use open2() to launch bc. Write bce.

Aug 5th, 1999 Write fbc_fix2sci, fbc_split, f_cmp, comparison primitives,
f_neg, me_magcompare, m_truncround, me_addpos, f_add and f_sub.
fbc_encode renamed to fbc_sci2fix. Redirect stderr when launching
bc.

Aug ?th, 1999 Write me_subpos.

Aug 11th, 1999 Add HC_LOG debug log, lots of calls to dbg1. Fix lots of bugs.
Write bc version of f_mul and f_div.

Oct 15th, 1999 Fix bug that caused small PT-1’s to be printed as e.g. 10301.30103.
Make dbg1flag a bitmask to allow debugging functions, expression pars-
ing, or both routines explicitly.

Oct 17th, 1999 Add variables (currently limited to all-alphabetic starting with
“v”).

Oct 18th, 1999 Change single-letter function abbreviations and special letters
like “e”, “p” etc. to uppercase, to clear the lowercase namespace for use
by user variables.

Oct 19th, 1999 Fix some bugs relating to infinity handling and conversion in
fbc routines. Four basic functions almost work (subtraction still seems to
have problems).

Nov 17th, 1999 Variables no longer need to start with “v”. Add square root
function.

8

Nov 24th, 1999 Combine parsing of e, π, φwith the variable and function pars-
ing; add error-check for undefined variables.

Jan 20th, 2000 Write fbc versions of f_ln and f_exp; fix bugs in fix2sci and
sci2fix; it now correctly computes 2100 in scale 30. Fix bugs in switching
back and forth between f64 and fbc.

Feb 6th, 2000 Fix bug that prevented sqrt(1+2) from working.

Mar 4th, 2000 Square root now goes through f_sqrt. Fix bugs that made bc
hi_init not compute g_pi properly.

Jul 28th, 2000 Remove dependency on “rpmlib.pl”.

Jan 2nd, 2001 Add ERASE_BS test.

Jan 3rd, 2001 Clean up internals of eval_2. Fix “right-to-left precedence bug”:
4−3−2 used to give 3, and 4/3/2 used to give 2.66667 I am deliberately
leaving exponents that way: 4ˆ3ˆ2 still gives 262144.

Jan 7th, 2001 Fix bugs: 2+2/(1+1) gave 2; 7ˆ−1 didn’t parse; scale 50, 2727

printed in scientific notation. Write pt_roundup. Fix prnt1 handling of
high PT-1’s. fbc-based PT calculation is actually usable now!

Jan 8th, 2001 Add history array and define_hist. Conversion across scale
changes works, at least in the cases I checked. Fix bug in eval_2: Square
root and other functions had become broken as a result of yesterday’s
fixes. Clean up fbc version of f_gamma a little, but it still suffers from
a fundamental limit of the Stirling formula method, which basically re-
quires that the number being factorialed must be at least as big as the 15th
root of 10curscale. Combined with the current limit of 10300 for the fbc
float data type, that means we can’t get more than 33 digits of accuracy
out of the f_gamma function. Increasing the exponent limit would fix it,
but that poses another problem with the scaling loop – for 50 digits of
accuracy, the scaling loop has to loop 2154 times (because 2154 = 10

50
15).

Finish implementing format command.

Jan 9th, 2001 Fix bug that made history list usable only for first 9 items.

Jan 15th, 2001 Write init_pi_2, which calculates π much more quickly. De-
crease gammalim.

Jan 16th, 2001 Add input history.

Jan 17th, 2001 Change letters I/H for input and output history to C/R (com-
mands and results).

Feb 10th, 2001 Fix “c2” in case where c2 is a variable assignment, and add “;”
symbol to separate commands.

Feb 16th, 2001 Add ability to take 1E9 as input (used to require 1.E9).

9

May 21st, 2001 Make x a synonym for *. This works pretty well, in fact you
can even define a variable x, and the expressions 2 x 4, 2 x x and x x x
all do the right thing! But, that’s not recommended. Also, change default
output format to format 1, and make it print multiplication as x because
it looks better. Also, mapped [] in input to (). This almost solves the
problem of having output and input formats match – the one missing
piece is allowing the user to type “PT”, such as 3 PT 1.2 x 10ˆ45.

May 30th, 2001 Almost fix the ambiguity of “!!”: You can now type 4!! and it
will give you (4!)!, rather than “4” followed by the previous typed line.

Jun 1st, 2001 When “;” is present in input, print each of the commands with
its C# = label as they’re being added to input_history.

Jun 10th, 2001 Detect presence of UNIX and doesn’t try to run bc if not on
UNIX.

Jun 13th, 2001 Fix some of the bugs in handling of “−”. Add pt_negate.

Oct 26th, 2001 Fix some bugs in command history expansion.

Nov 4th, 2001 Add autodetect of ˆH and call stty erase if they type it (UNIX
only)

Jan 29th, 2002 Move automatic stty erase fix to subroutine fixerase.

Mar 1st, 2002 Read first expression from command line.

Mar 5th, 2002 Fix some bugs in rounding and prnt2 – but it still has the
problem that scale=15 prints the same number of digits as the default
scale=14.

Mar 6th, 2002 Now can put multiple commands including scale= and quit
on command line.

Jul 11th, 2002 Convert tabs to spaces in input.

2.3 Revision history of HyperCalc JavaScript

Oct 18th, 2004 Started to convert HyperCalc Perl into Visual Basic.

Oct 21st, 2004 Convert into JavaScript instead, since the language of VB does
not really match that of Perl but JS. Moreover, JS has built-in support of
Regular Expressions while VB not.

Nov 4th, 2004 HyperCalc JavaScript basically finished. Started documenta-
tion.

10

Nov 5th, 2004 Now the program displays 999
as 4.2812 . . . × 10369693099 instead

of 10369693099.631.... (i.e., will use scientic notation as much as possible.)

Nov 7th, 2004 Improved output history out-of-range detection. Handles
1E+12345 correctly. Can use Mathematica-Style 2*ˆ6 for normal 2E6.

5ˆˆ(5) now displays 10101010100000

instead of 10101010105

(i.e., try to collapse
PT level as much as possible. The current routine is not perfect yet,
however). Implemented input history. Fixed a bug that causes functions
not working.

Jan 11th, 2005 Now the program outputs 10−8 instead of 1e-8. Improved the
input-review system that it won’t wait too long when calling several $
repeatedly.

Jan 16th, 2005 Fixed a bug that calculates e1086

2 wrong (resulting a PT-0). Added
the ? command.

Figure 2.1: A typical screen of HyperCalc JavaScript

11

Chapter 3

Using HyperCalc

Big notice to HyperCalc Perl users: I’ve basically changed the interface of HyperCalc
JavaScript from the original versions because I haven’t copied those functions after
eval_1(). So if you use the input like HyperCalc Perl you’ll probably get a wrong
answer or error.

3.1 Evaluating Simple Expressions

It is easy to use HyperCalc. After HyperCalc is loaded, you should be able to
see a large blank in the middle, a text field under the blank and a button called
“Calculate!” on the right of the field. The large blank is the output screen of
HyperCalc that all results will be displayed there. The text field is for entering
expression, and the button is to evaluate the expression you entered.

You can just enter your expressions like the ones displayed in textbook. For
example, to calculate 1 + 2, you enter

• 1 + 2

in the textfield and press the “Calculate!” or hit . The followings will be
shown in the output screen:

In[1] := 1 + 2
Out[1] = 3

The following lists all available operations in HyperCalc:

12

Operator Purpose Example Result
+ Addition 1 + 2 3
- Subtraction 6 - 7 −1
* Multiplication 4 * 2 8
/ Division 3 / 5 0.6
ˆ Raising power 2 ˆ 10 1024
e Base of natural loga-

rithm (e = 2.71828 . . .)
e ˆ 5 148.413 . . .

pi Pi (π = 3.14159 . . .) pi / 2 1.57079 . . .
phi Golden ratio (φ =

√
5+1
2)

1 / phi 0.618033 . . .

eulerGamma Euler’s gamma con-
stant (γ = 0.577215 . . .)

-eulerGamma −0.577215 . . .

! Factorial 8! 40320
inf Infinity 1 / inf 0
(...) Parenthesis (Group-

ing)
5*(1-6) −25

exp Natural anti-logarithm
(ex)

exp(5) 148.413 . . .

ln Natural logarithm ln(10) 2.32585 . . .
log Common logarithm log(e) 0.434294 . . .
logb Logarithm of specific

base
logb(2,64) 6

sqrt Square root sqrt(3) 1.73205 . . .
root Taking root root(3, 8) 2
sin, cos, tan Trigonometric func-

tions
sin(pi/3) 0.866025 . . .

asin, acos, atan Invserse trigonometric
functions

atan(inf) 1.57079 . . .

gamma Gamma function gamma(0.5)ˆ2 3.14159 . . .
deg Degree sign (◦ = π

180) sin(60deg) 0.866025 . . .

In HyperCalc, multiplication signs can be omitted. For instance, the expres-
sions 3 * tan(30 * deg), 3 tan(30 deg) and 3tan(30deg) all result in

√
3.

You can even type 7 4 for 7 × 4. However, the parenthasis around arguments
of functions cannot be omitted, i.e., log(5)must be typed as is, and log 5will
be interpreted as “log×5” and result in NaN.

HyperCalc follows the precedence like normal algebraic calculation. To
explain explicitly, the functions and parenthesis, are handled first, then factorial,
then negation (e.g., -123), then power raising, then multiplication and division
and finally addition and subtraction. When operators of the same precedence
go together, they are handled from left to right except power raising, which is
handled from right to left.

13

HyperCalc is case-insensitive, that means gamma, Gamma, GAMMA and gAmMA
are all the same. Also, many functions in HyperCalc possesses alias that do the
same job as the original. The following lists all aliases available:

Function Alias
([

)]

inf infin, infty, infinity
phi goldenRatio

ln loge

log log10

logb logn

asin asn, arcsin
acos acs, arccos
atan atn, arctan
sqrt sqr

root rt

3.2 Big Numbers in HyperCalc

3.2.1 Entering Big Numbers

Since HyperCalc is designed for calculation with really big numbers. To enter
a big number, the most common method is using scientific form:

• mantissaEexponent

Here “mantissa” and “exponent” are two real number. This represents m× 10e.
For example, 5E+16means 5 × 1016. The value of “exponent” is not limitted as
for many other calculators. You can set it as high as you want — there is no
problem in handling 1E+1234567890.

However, the scientific form cannot be used to enter really big numbers,
say, 10101234567890

would require you to enter 1E+10000 . . . 0000︸ ︷︷ ︸
1234567890 zeros

. This is clearly

impossible. However, we can use the PT notation to indicate these kinds of
numbers. (See section 1.2 for details of PT notation.) To enter a PT number, use

• ptPvalue

14

which represents

101010.
. .

10v

︸ ︷︷ ︸
p tens

So for 10101234567890
we can just input 2P1234567890. Note that the “value” must

be positive.

The alias of E is *ˆ and P is PT and ˆˆ.

3.2.2 Displaying Big Numbers

HyperCalc will display numbers as natural as possible. But sometimes the
number will be too “big” to display in radix form, and it will be “collapsed”
into a single PT notation. To be clear, try evaluate 6P1 and 7P1. The former will

result in 1010101010000000000

, but the latter will become 6ˆˆ(10). This is because the
latter is too “big” and using PT notation would be better. By default HyperCalc
will only display values in radix form upto PT-5.

3.3 I/O History

The I/O history is the list of input/output results on the output screen. You can
use I/O history retrieval commands to get those values.

3.3.1 Output History

The last output can be obtained by entering %. For example:

• piˆpi

• %ˆ2 - 2% + sin(%)

will evaluate 36.4621596072079 and then 1255.6199743011982. If you want to
refer to one specific output at line n, use

• %n

15

3.3.2 Input History

The last input can be re-evaluated by entering $. For example:

• 3

• 3ˆ%

• $

will evaluate 3, 27 and 7625597484987. If you want to refer to one specific input
at line n, use

• $n

3.4 Variables and Functions

The internal variables and functions are never enough for pratical use. Because
of this, you can define your own variables and functions in HyperCalc.

3.4.1 Custom Variables

To define a custom variable, enter

• name = def

Here, “name” is the name of the variable and “def” is its definition. To use the
variable, just type its name. For example,

• c = 299792458

• m = 9.10938188E-31

• massEnergyOfElectron = m cˆ2

will define three variables: c, m and massEnergyOfElectron and are assigned
to be 299792458, 9.10938 × 10−31 and mc2 = 8.18710 × 10−14 respectively.

Notice that the internal variables (e, π, φ, γ and∞) will never be overridden.
If you call pi = 22/7 then use pi in later evaluations you will still get 3.14159 . . .
but not 3.142857

16

3.4.2 Custom Functions

To define a custom variable, enter

• name := def

Here, “name” is the name of the function and “def” is its definition. You can use
any numbers of arguments, and use #n to substitute them (the n corresponds
to the nth argument). #1 can be entered as just #. To use the function, type its
name then followed by the list of arguments enclosed inside the parenthesis.
For example,

• cosineLawS := sqrt(#1ˆ2 + #2ˆ2 - 2#1#2cos(#3))

• cosineLawA := acos((#1ˆ2 + #2ˆ2 - #3ˆ2)/(2#1#2))

• cosineLawA(5, 6, 7)/deg

will define two functions: cosineLawS and cosineLawA that both take three
arguments. Their definitions are:

cosineLawS(x1, x2, x3) =
√

x2
1 + x2

2 − 2x1x2 cos x3

and

cosineLawA(x1, x2, x3) =
x2

1 + x2
2 − x2

3

2x1x2

The last statement evaluates the cosineLawA function and set the arguments
(x1, x2, x3) to be (5, 6, 7). The result of this function would be 1.36943 . . . and the
final result would be 78.46304096718451.

A function can take no arguments as well. For example,

• f := %ˆ%

To call these kinds of functions, you do not need to place a pair of parenthesis
after them, i.e.,

• 12

• 5 + f

works and results 8916100448261.

As with variables, the internal functions cannot be overridden either.

17

3.4.3 Variables vs. Functions

At a first glance, a function with no arguments seems to have the same meaning
as variable. This is totally wrong. To major difference of variables and func-
tions is that variables are evaluated once they are assigned while functions are
evaluated only when they are called. Compare the followings:

• 5

• myVar = 4 + %

• myFunc := 4 + %

• 18

If you call myVar after “18”, you get 9 because when it is defined to be the result
of 4 + % in the second line, which is 9. But if you call myFunc you will get 22
because when it is defined to bethe pattern 4 + %.

3.4.4 Reviewing Custom Variables and Functions

To know what custom variables have been defined, enter

• !=

Similarly, to know definitions of all custom functions, enter

• !:=

3.4.5 Removing Custom Variables and Functions

To remove a variable or function, enter

• name =.

To remove all variables, enter

• !!=

or

18

• !=.

To remove all functions, enter

• !!:=

or

• !:=.

3.5 Miscellaneous

To clear the output screen, enter

• !!

To clear the I/O history, enter

• !!%

or

• !!$

To view all commands preset in HyperCalc, enter

• ?

19

Chapter 4

Troubleshooting

4.1 Non-Intuitive Results when Working with Huge
Numbers

If you spend a while exploring the ranges of huge numbers HyperCalc can
handle, you will probably start noticing some paradoxical results and might
even start to think the calculator is giving wrong answers.

For example, try calculating 27 to the power of googolplex (a googolplex is
10 to the power of googol and a googol is 10100). Key in:

• 27ˆ10ˆ10ˆ100

and it prints 101010100

. So the calculator thinks that:

271010100

= 101010100

This is clearly wrong — and it doesn’t even seem to be a good approximation.
What’s going on?

Let’s try calculating the correct answer ourselves. We need to express the
answer as 10 to the power of 10 to the power of something, because that’s the
standard format the calculator is using, and we’re going to see how much of

an error it made. So, we want to compute 271010100

as a tower of powers of 10.
The first step is express the power of 27 as a power of 10 with a product in the
exponent, using the formula xy = 10y log x:

271010100

= 10log 27×1010100

20

log 27 is about 1.43, so we have

271010100

= 101.43×1010100

Now we have a base of 10 but the exponent still needs work. The next step
is to express the product as a sum in the next-higher exponent; this time the
formula we use is xy = 10log x+log y:

101.43·1010100

= 1010log 1.43+log 100

log 1.43 is about 0.155, and if we add this to 10100 we get

10100.155+10100

= 10101000...000.155

= 10101.000...000155×10100

where there are 94 more 0’s in place of each of the “...”. So our final answer is:

271010100

= 10101.000...000155×10100

Now that we’ve expressed the value of 27googolplex precisely enough to see the
calculator’s error — look how small the error is! The calculator would need to
have at least 104 digits of precision to be able to handle the value “1.000...000155”
accurately — but it only has 16 digits of accuracy. Those 16 digits are taken up
by the 1 and the first 15 0’s — so when the calculator gets to the step where
we’re adding 0.155 to 1.0 × 10100, it just rounds off the answer to 1.0 × 10100 —
and produces the answer we saw when we performed the calculation:

101010100

Even if it did have the precision, it wouldn’t have room to print the whole
104 digits on the screen, so the answer you see would look the same. And no
matter how many digits of accuracy we try to give the calculator, there’s always
another even bigger number it wouldn’t be able to handle. For example, the
calculator would need slightly over a million digits of accuracy to distinguish

2710101000000

from 1010101000000

and if we just add one more 10 to that tower of exponents, all hope of avoiding
roundoff is lost.

4.2 FAQ

4.2.1 Why I can’t use x as the multiplication sign?

If you were switched from HyperCalc Perl, you will notice that x can no longer
be a substitution of multiplication sign, and you will get an “Undefined variable

21

or function” error. The reason is that HyperCalc JavaScript no longer supports
this because of the introduction of implicit multiplication sign (spaces). For
instance, if x is used as the multiplication sign, then it would be ambigious for
what x x xmeans: does it mean x ·x or x ·x ·x? Of course, the implicit multipli-
cation sign feature can be removed, but this is a bigger trade-off. Even without
the implicit multiplication sign, this feature is still a dirty implementation (at
least in my opinion) and should not be used.

4.2.2 Why I can’t use c or r as input/output history recall?

They are mapped to the characters $ and % respectively.

4.2.3 I entered !! for re-evaluating the last statement but the
screen was blanked.

You should enter $ instead. !! is for clearing the output screen.

4.2.4 Why 7 / 100 * 100 does not give 7?

This is because of how JavaScript handles a number. In JavaScript, a number
is in IEEE 1394 Double format, and all key infomation about a number is in
binary format. Precision is lost because of this. Hence the result will be erred
by a little — about 8.88 × 10−16 in this case. In order to improve the accuracy,
we have started to consider using arbitrary-precision float numbers, but this is
hard to implement. Hence you should expect waiting for a long period.

4.2.5 Can I store my custom variables/functions in a file?

Generally, you can’t.
Technically, you can do it by changing the source code (hint: changes line 86
and 87 in the source).

4.2.6 Can I redistribute/modify HyperCalc ?

Yes. You can redistribute/modify HyperCalc under the terms of the GNU
General Public License (See chapter 5).

22

4.2.7 What if I still have questions?

Email it to casio_fifty@yahoo.com.hk.

23

casio_fifty@yahoo.com.hk

Chapter 5

GNU General Public License

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place – Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

24

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software—to make sure
the software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restric-
tions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

2

GNU G P L
T  C F C, D

M

0. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed under
the terms of this General Public License. The “Program”, below, refers to
any such program or work, and a “work based on the Program” means
either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not cov-
ered by this License; they are outside its scope. The act of running the
Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent
of having been made by running the Program). Whether that is true
depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

(c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such interac-
tive use in the most ordinary way, to print or display an announce-
ment including an appropriate copyright notice and a notice that

1

there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange;
or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

2

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source code
means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automat-
ically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the re-
cipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot distribute so as to satisfy simul-
taneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free re-
distribution of the Program by all those who receive copies directly or

3

indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she
is willing to distribute software through any other system and a licensee
cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be
a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

4

NW

11. B       ,    
  ,       . E
        / 

    “ ”     ,
   , ,    ,  
        .
T            
 . S    ,     
  ,   .

12. I            -
    ,       
/      ,    
 ,   , ,   -
            

(            -
             

      ),     
          .

E  T  C

5

5.1 How to Apply These Terms to Your New Pro-
grams

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year><name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foun-
dation, Inc., 59 Temple Place – Suite 330, Boston, MA 02111-1307,
USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) <year><name of author>
Gnomovision comes with ABSOLUTELY NO WARRANTY; for de-
tails type ‘show w’.
This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appro-
priate parts of the General Public License. Of course, the commands you use

6

may be called something other than show w and show c; they could even be
mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-
gram
‘Gnomovision’ (which makes passes at compilers) written by James
Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

7

	1 Introducing Hypercalc
	1.1 So what is Hypercalc?
	1.2 Representing Numbers in Hypercalc

	2 History of Hypercalc
	2.1 Revision history of Hypercalc PalmPilot
	2.2 Revision history of Hypercalc Perl
	2.3 Revision history of Hypercalc JavaScript

	3 Using Hypercalc
	3.1 Evaluating Simple Expressions
	3.2 Big Numbers in Hypercalc
	3.2.1 Entering Big Numbers
	3.2.2 Displaying Big Numbers

	3.3 I/O History
	3.3.1 Output History
	3.3.2 Input History

	3.4 Variables and Functions
	3.4.1 Custom Variables
	3.4.2 Custom Functions
	3.4.3 Variables vs. Functions
	3.4.4 Reviewing Custom Variables and Functions
	3.4.5 Removing Custom Variables and Functions

	3.5 Miscellaneous

	4 Troubleshooting
	4.1 Non-Intuitive Results when Working with Huge Numbers
	4.2 FAQ
	4.2.1 Why I can't use x as the multiplication sign?
	4.2.2 Why I can't use c or r as input/output history recall?
	4.2.3 I entered !! for re-evaluating the last statement but the screen was blanked.
	4.2.4 Why 7 / 100 * 100 does not give 7?
	4.2.5 Can I store my custom variables/functions in a file?
	4.2.6 Can I redistribute/modify Hypercalc?
	4.2.7 What if I still have questions?

	5 GNU General Public License
	5.1 How to Apply These Terms to Your New Programs

